• Treffer 1 von 1
Zurück zur Trefferliste

Micromechanical investigations and modelling of a copper-antimony-alloy under creep conditions

  • In many practical applications, creep damage is the limiting factor of a component’s lifetime. A micromechanical model of creep induced grain boundary damage is proposed, which allows for the simulation of creep damage in a polycrystal within the framework of finite element analysis. The model considers grain boundary cavitation and sliding according to a micromechanically motivated cohesive zone model while creep deformation of the grains is described following the slip system theory. The model can be applied to idealised polycrystalline structures, such as a Voronoi tessellation or, like demonstrated here, to real grain structures of miniature creep specimens. Creep tests with pure Cu single crystals and with a coarse-grained polycrystalline Cu-1 wt.% Sb alloy at 823 K have been performed and used to calibrate the polycrystal model. The grain structure of the polycrystalline Cu–Sb specimens has been revealed by the EBSD method. Extensive grain boundary sliding and cavitation has beenIn many practical applications, creep damage is the limiting factor of a component’s lifetime. A micromechanical model of creep induced grain boundary damage is proposed, which allows for the simulation of creep damage in a polycrystal within the framework of finite element analysis. The model considers grain boundary cavitation and sliding according to a micromechanically motivated cohesive zone model while creep deformation of the grains is described following the slip system theory. The model can be applied to idealised polycrystalline structures, such as a Voronoi tessellation or, like demonstrated here, to real grain structures of miniature creep specimens. Creep tests with pure Cu single crystals and with a coarse-grained polycrystalline Cu-1 wt.% Sb alloy at 823 K have been performed and used to calibrate the polycrystal model. The grain structure of the polycrystalline Cu–Sb specimens has been revealed by the EBSD method. Extensive grain boundary sliding and cavitation has been observed in the crept specimens. Grain boundary sliding has been found to promote wedge-type damage at grain boundary triple junctions and to contribute significantly to the total creep strain. Furthermore, the assumed stress sensitivity of the models grain boundary cavity nucleation rate strongly influences the development of wedge-type damage.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1-s2.0-S0167663613002044-main.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Markus Vöse, F. Otto, Bernard Fedelich, G. Eggeler
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Mechanics of materials
Jahr der Erstveröffentlichung:2014
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.2 Experimentelle und modellbasierte Werkstoffmechanik
Verlag:Elsevier Ltd.
Verlagsort:Amsterdam
Jahrgang/Band:69
Ausgabe/Heft:1
Erste Seite:41
Letzte Seite:62
Freie Schlagwörter:Copper–Antimony-Alloy; Creep; Damage; Grain boundary cavitation; Grain boundary sliding; Micromechanical model
DOI:https://doi.org/10.1016/j.mechmat.2013.09.013
ISSN:0167-6636
ISSN:1872-7743
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:31.10.2013