• Treffer 1 von 5
Zurück zur Trefferliste

Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support

  • A three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid–liquid phase transition were taken into account in this model. Solidification was modelled by the Carman–Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern inA three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid–liquid phase transition were taken into account in this model. Solidification was modelled by the Carman–Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern in the melt and thus also the temperature distribution were significantly changed by the application of oscillating magnetic fields. It was shown that the application of an ac magnetic field to laser beam welding allows for a prevention of the gravity drop-out. The simulation results are in good qualitative agreement with the experimental observations.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Numerical simulation of full-penetration laser.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Marcel BachmannORCiD, Vjaceslav Avilov, Andrey GumenyukORCiD, Michael RethmeierORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of Physics D
Jahr der Erstveröffentlichung:2012
Herausgeber (Institution):Institute of Physics
Verlag:IOP Publ.
Verlagsort:Bristol
Jahrgang/Band:45
Ausgabe/Heft:3
Erste Seite:035201-1 -
Letzte Seite:035201-13
Freie Schlagwörter:Electromagnetic weld pool support; Laser beam welding; Lorentz force; Marangoni stresses; Natural convection
DOI:10.1088/0022-3727/45/3/035201
ISSN:0022-3727
ISSN:1361-6463
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:09.01.2012
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.