• Treffer 10 von 50
Zurück zur Trefferliste

Dynamic stiffness of foundations on inhomogeneous soils for a realistic prediction of vertical building resonance

  • The aim of this contribution is a practice-oriented prediction of environmental building vibrations. A Green's functions method for layered soils is used to build the dynamic stiffness matrix of the soil area that is covered by the foundation. A simple building model is proposed by adding a building mass to the dynamic stiffness of the soil. The vertical soil-building transfer functions with building-soil resonances are calculated and compared with a number of measurements of technically induced vibrations of residential buildings. In a parametrical study, realistic foundation geometries are modeled and the influence of incompressible soil, deep stiff soil layering, soft top layers, and increasing soil stiffness with depth is analyzed. All these special soil models reduce the resonant frequency compared to a standard homogeneous soil. A physically motivated model of a naturally sedimented soil has a stiffness increasing with the square root of the depth and yields a foundationThe aim of this contribution is a practice-oriented prediction of environmental building vibrations. A Green's functions method for layered soils is used to build the dynamic stiffness matrix of the soil area that is covered by the foundation. A simple building model is proposed by adding a building mass to the dynamic stiffness of the soil. The vertical soil-building transfer functions with building-soil resonances are calculated and compared with a number of measurements of technically induced vibrations of residential buildings. In a parametrical study, realistic foundation geometries are modeled and the influence of incompressible soil, deep stiff soil layering, soft top layers, and increasing soil stiffness with depth is analyzed. All these special soil models reduce the resonant frequency compared to a standard homogeneous soil. A physically motivated model of a naturally sedimented soil has a stiffness increasing with the square root of the depth and yields a foundation stiffness that decreases with foundation area considerably stronger than the relatively insensitive homogeneous soil. This soil model is suited for the Berlin measuring sites and reproduces satisfactorily the experimental results.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Lutz Auersch
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of geotechnical and geoenvironmental engineering
Jahr der Erstveröffentlichung:2008
Verlag:American Society of Civil Engineers
Verlagsort:Reston, Va.
Jahrgang/Band:134
Ausgabe/Heft:3
Erste Seite:328
Letzte Seite:340
Freie Schlagwörter:Foundations; Predictions; Resonance; Stiffness; Vibration
DOI:https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(328)
ISSN:1090-0241
ISSN:1943-5606
Verfügbarkeit des Volltexts:Papiergebundenes Belegexemplar in der Bibliothek der BAM vorhanden ("Hard-copy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:24.04.2008