Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 9 von 17
Zurück zur Trefferliste

Comparison of different dispersion evaluation methods and a case history with the inversion to a soil model, related admittance functions, and the prediction of train-induced ground vibration

  • Ground vibrations due to different technical sources are analysed in theory and experiment for the dispersion of Rayleigh waves and the admittance spectra. Both tasks are theoretically based on the same concept: The admittance function in frequency–wavenumber domain yields the dispersion as its maxima, and the admittance function in space domain is obtained by integrating it over the wavenumbers. On the experimental side, many signal processing methods have been applied to many sites and have been developed by the authors in the last 35 years, i.e., time-domain methods, including the cross-correlation method, and frequency-domain methods such as the spectral analysis of surface waves with two or multiple sensors, the wavenumber-transform method, and the spatial autocorrelation method. All methods are presented by their basic formula and by at least one example site. Different sensor arrays and deterministic and stochastic sources have been tested for the spatial autocorrelation methodGround vibrations due to different technical sources are analysed in theory and experiment for the dispersion of Rayleigh waves and the admittance spectra. Both tasks are theoretically based on the same concept: The admittance function in frequency–wavenumber domain yields the dispersion as its maxima, and the admittance function in space domain is obtained by integrating it over the wavenumbers. On the experimental side, many signal processing methods have been applied to many sites and have been developed by the authors in the last 35 years, i.e., time-domain methods, including the cross-correlation method, and frequency-domain methods such as the spectral analysis of surface waves with two or multiple sensors, the wavenumber-transform method, and the spatial autocorrelation method. All methods are presented by their basic formula and by at least one example site. Different sensor arrays and deterministic and stochastic sources have been tested for the spatial autocorrelation method and the wavenumber-transform method at several sites. In addition, all frequency-domain methods are presented for a specific layered site comparing their quality. The evaluated dispersion curves are very similar, but a somewhat higher frequency range has been found for the fastest method, i.e., the multi-sensor spectral-analysis-of-surface-waves method. The theoretical solutions have been used for the inversion of the measured dispersion to the soil profile of the specific layered soil. The theoretical soil model has subsequently been used to predict the ground vibration spectra of hammer and railway excitation that exhibit a good agreement with the corresponding measurements. Thus, the contribution shows the benefit of active and passive seismic methods for the prediction of railway vibration, including a new version of the spatial autocorrelation method for technical vibrations. On the other hand, technical and namely railway vibrations are considered a seismic source for the exploration of near surface soils.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Comparison of different dispersion evaluation methods and a case history.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Lutz AuerschORCiD, Samir Said
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Near surface geophysics
Jahr der Erstveröffentlichung:2015
Verlag:EAGE - European Association of Geoscientists & Engineers
Verlagsort:Houten
Jahrgang/Band:13
Ausgabe/Heft:2
Erste Seite:127
Letzte Seite:142
DOI:10.3997/1873-0604.2015011
ISSN:1569-4445
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:27.08.2015
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.