• Treffer 3 von 3
Zurück zur Trefferliste

The use and validation of measured, theoretical, and approximate point-load solutions for the prediction of train-induced vibration in homogeneous and inhomogeneous soils

  • The layered soil is calculated in the frequency wavenumber domain and the solutions for fixed or moving point or track loads follow as wavenumber integrals. The resulting point load solutions can be approximated by simple formula. Measurements yield the specific soil parameters for the theoretical or approximate solutions, but they can also directly provide the point-load solution (the transfer function of that site). A prediction method for the train-induced ground vibration has been developed, based on one of these site-specific transfer functions. The ground vibrations strongly depend on the regular and irregular inhomogeneity of the soil. The regular layering of the soil yields a cut-on and a resonance phenomenon, while the irregular inhomogeneity seems to be important for high-speed trains. The attenuations with the distance of the ground vibration, due to point-like excitations such as vibrator, hammer, or train-track excitations, were investigated and compared. All theoreticalThe layered soil is calculated in the frequency wavenumber domain and the solutions for fixed or moving point or track loads follow as wavenumber integrals. The resulting point load solutions can be approximated by simple formula. Measurements yield the specific soil parameters for the theoretical or approximate solutions, but they can also directly provide the point-load solution (the transfer function of that site). A prediction method for the train-induced ground vibration has been developed, based on one of these site-specific transfer functions. The ground vibrations strongly depend on the regular and irregular inhomogeneity of the soil. The regular layering of the soil yields a cut-on and a resonance phenomenon, while the irregular inhomogeneity seems to be important for high-speed trains. The attenuations with the distance of the ground vibration, due to point-like excitations such as vibrator, hammer, or train-track excitations, were investigated and compared. All theoretical results were compared with measurements at conventional and high-speed railway lines, validating the approximate prediction method.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 684_fullpaper_1246671395224948.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Lutz Auersch
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):International journal of acoustics and vibration
Jahr der Erstveröffentlichung:2014
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.2 Ingenieurbau
Herausgeber (Institution):International Institute of Acoustics and Vibration
Verlagsort:St. Petersburg, Russia
Jahrgang/Band:19
Ausgabe/Heft:1
Erste Seite:52
Letzte Seite:64
ISSN:1027-5851
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein