• Treffer 1 von 12
Zurück zur Trefferliste

Fast trains and isolating tracks on inhomogeneous soils

  • Methods have been presented for detailed studies of railway vibration and for the fast prediction of train-induced ground vibration. The ground vibration is generated by static or dynamic loads. The main purpose of this contribution was to show the influence of inhomogeneous soils on the different vibration components. Layered soils, namely a soft layer on a stiffer half-space, yield a quite specific transmission behavior. The low-frequency and sometimes also high-frequency cut-off of the transfer function of the soil is demonstrated in theory and by experiments at many sites of which the soil model is approximated from dispersion and transfer function measurements. The layer frequency divides the frequency range in a low-frequency range, where the stiff half-space rules the low amplitudes, and a high amplitude high-frequency range which is mainly determined by the softer top layer. A thick soft layer yields a very low layer frequency, so that the higher soft soil amplitudes have aMethods have been presented for detailed studies of railway vibration and for the fast prediction of train-induced ground vibration. The ground vibration is generated by static or dynamic loads. The main purpose of this contribution was to show the influence of inhomogeneous soils on the different vibration components. Layered soils, namely a soft layer on a stiffer half-space, yield a quite specific transmission behavior. The low-frequency and sometimes also high-frequency cut-off of the transfer function of the soil is demonstrated in theory and by experiments at many sites of which the soil model is approximated from dispersion and transfer function measurements. The layer frequency divides the frequency range in a low-frequency range, where the stiff half-space rules the low amplitudes, and a high amplitude high-frequency range which is mainly determined by the softer top layer. A thick soft layer yields a very low layer frequency, so that the higher soft soil amplitudes have a wider range down to low frequencies. A thin layer yields a high layer frequency, so that the high frequencies above this layer frequency are dominant. The higher the contrast between the stiff half-space and the soft layer is, the stronger the increase between the half-space and layer amplitudes, the more characteristic are the spectra of the soil transfer function. The range of measured soils has been from vS1 down to 125 m/s, vS2 up to 1000 m/s and the layer frequencies are within 10 Hz < f0 < 75 Hz. Moreover, during this measuring campaign in Switzerland, all 11 sites showed clearly the layer-on-half-space behaviour. The transfer functions of inhomogeneous soils have been used to predict the ground vibration due to dynamic axle loads which is usually thought to be the most important component. The passage of static loads, in the contrary, results in very small vibration amplitudes for low train speeds, which can only be found at near distances and at low frequencies. They attenuate very rapidly with distance and lose very rapidly the higher frequency content. The passage of static axle loads can be included in the prediction of railway vibration just for completeness. Special attention should be given to the case if the train runs with the Rayleigh-wave speed of the soil (Rayleigh train). The Rayleigh-train effect is strongest for a homogeneous half-space: At the near-field of the track the amplitudes are raised strongly compared to normal trains, and in addition, little attenuation with distance is observed. In case of a layered soil, the low-frequency cut-off reduces the frequency range and the amplitudes of the homogeneous quasi-static ground vibrations. Therefore, the Rayleigh-train effects are clearly reduced by a layered soil and they disappear if the layer frequency (for example for a thin layer) is higher than the frequency band of the axle impulse. The Rayleigh-train effect could completely disappear in a randomly inhomogeneous soil, but this has not been analysed so far. The axle impulses from static loads can have an additional, quite different effect. They can be scattered by a randomly inhomogeneous soil so that a part (the scattered part) of the axle impulse can reach further distances from the track. This can establish a certain mid-frequency component of the ground vibration which becomes dominant in the far-field, and this important component exists for all train speeds. Experimental results from BAM and international measurements show the importance of the corresponding frequency range. The mitigation of train induced ground vibration by elastic and stiff track elements has been analysed threefold. The vehicle-track interaction yields the reduction at high frequencies above the vehicle-track resonance. This is the standard effect. The filtering of trackbed errors by the bending stiffness of the track yields a certain mid-frequency effect. An even stronger mid-frequency effect is predicted for the mitigation of the scattered axle impulses by the bending stiffness and elastic elements of the track.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • scan_2019-07-11_09-29-55r.pdf
    eng
  • scan_2019-07-11_09-36-10.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Lutz Auersch
Persönliche Herausgeber/innen:Victor Krylov
Dokumenttyp:Buchkapitel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Ground vibrations from high-speed railways
Auflage:1
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.2 Ingenieurbau
Verlag:ICE Publishing
Verlagsort:London
Erste Seite:Chapter 2, 27
Letzte Seite:75
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Ground vibration; Inhomogeneous soils; Layered soils; Mitigation; Multi-beam method; Prediction; Scattered axle impulses; Soft track elements; Track beam; Train excitation; Wavenumber method
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Infrastruktur / Sicherheit von Industrieanlagen und Verkehrswegen
DOI:https://doi.org/10.1680/gvfhsr.63792.027
ISBN:978-0-7277-6379-2
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:11.07.2019
Referierte Publikation:Nein