• Treffer 5 von 17
Zurück zur Trefferliste

Force and ground vibration reduction of railway tracks with elastic elements

  • The reduction of train-induced ground vibration by elastic elements such as rail pads and sleeper pads has been analyzed by a combined finite-element boundary-element method. The dynamic compliance of the track, the transfer function of the total force on the ground and the ground vibration ratios have been calculated for a variety of isolated and un-isolated track systems. It has been found that the soil force transfer, which describes the excitation force of the soil, is an appropriate quantity to predict the reduction of the ground vibration and the effectiveness of isolated tracks. All force transfer functions of isolated tracks display a vehicle–track resonance where the wheelset on the compliant track is excited by wheel and track irregularities. At higher frequencies, considerable reductions of the amplitudes are observed as the benefit of the resilient element. The influence of the stiffness of the rail or sleeper pads, the ballast and the soil, and the mass of the sleeper andThe reduction of train-induced ground vibration by elastic elements such as rail pads and sleeper pads has been analyzed by a combined finite-element boundary-element method. The dynamic compliance of the track, the transfer function of the total force on the ground and the ground vibration ratios have been calculated for a variety of isolated and un-isolated track systems. It has been found that the soil force transfer, which describes the excitation force of the soil, is an appropriate quantity to predict the reduction of the ground vibration and the effectiveness of isolated tracks. All force transfer functions of isolated tracks display a vehicle–track resonance where the wheelset on the compliant track is excited by wheel and track irregularities. At higher frequencies, considerable reductions of the amplitudes are observed as the benefit of the resilient element. The influence of the stiffness of the rail or sleeper pads, the ballast and the soil, and the mass of the sleeper and the wheelset on the resonance frequency and the reduction has been investigated. Sleeper pads are advantageous due to the higher mass that is elastically supported compared to the rail-pad track system. The combination of elastic rail and sleeper pads has been found to be disadvantageous, as the second resonance occurs in the frequency range of intended reduction.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Auersch_Force and ground vibration reduction.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Lutz Auersch
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of vibration and control (JVC)
Jahr der Erstveröffentlichung:2015
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.2 Ingenieurbau
Verlag:Sage Science Press
Verlagsort:Thousand Oaks, CA, USA
Jahrgang/Band:21
Ausgabe/Heft:11
Erste Seite:2246
Letzte Seite:2258
Freie Schlagwörter:Force transfer; Ground vibration; Rail pad; Railway; Reduction; Sleeper pad; Track
DOI:https://doi.org/10.1177/1077546313507099
ISSN:1077-5463
ISSN:1741-2986
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:13.07.2015