• Treffer 1 von 15
Zurück zur Trefferliste

Multiphase and Pore Scale Modeling on Catalyst Layer of High-Temperature Polymer Electrolyte Membrane Fuel Cell

  • Phosphoric acid as the electrolyte in high-temperature polymer electrolyte membrane fuel cell plays an essential role in ist performance and lifetime. Maldistribution of phosphoric acid in the catalyst layer (CL) may result in performance degradation. In the present study, pore-scale simulations were carried out to investigate phosphoric acid’s multiphase flow in a cathode CL. A reconstructed CL model was built using focused ion beam-SEM images, where distributions of pore, carbon support, binder, and catalyst particles can be identified. The multi-relaxation time lattice Boltzmann method was employed to simulate phosphoric Acid invading and leaching from the membrane into the CL during the membrane electrode assembly fabrication process. The predicted redistribution of phosphoric acid indicates that phosphoric acid of low viscosity or low wettability is prone to leaching into the CL. The effective transport properties and the active electrochemical active surface area (ECSA) werePhosphoric acid as the electrolyte in high-temperature polymer electrolyte membrane fuel cell plays an essential role in ist performance and lifetime. Maldistribution of phosphoric acid in the catalyst layer (CL) may result in performance degradation. In the present study, pore-scale simulations were carried out to investigate phosphoric acid’s multiphase flow in a cathode CL. A reconstructed CL model was built using focused ion beam-SEM images, where distributions of pore, carbon support, binder, and catalyst particles can be identified. The multi-relaxation time lattice Boltzmann method was employed to simulate phosphoric Acid invading and leaching from the membrane into the CL during the membrane electrode assembly fabrication process. The predicted redistribution of phosphoric acid indicates that phosphoric acid of low viscosity or low wettability is prone to leaching into the CL. The effective transport properties and the active electrochemical active surface area (ECSA) were computed using a pore-scale model. They were subsequently used in a macroscopic model to evaluate the cell performance. A parametric study shows that cell performance first increases with increasing phosphoric acid content due to the increase of ECSA. However, further increasing phosphoric acid content results in performance degradation due to mass transfer limitation caused by acid flooding.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Duan_2021_J._Electrochem._Soc._168_054521.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:K. Duan, L. Zhu, M. Li, L. Xiao, N. Bevilacqua, L. Eifert, I. Manke, Henning MarkötterORCiD, R. Zhang, R. Zeis, P. -C. Sui
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of The Electrochemical Society
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Röntgenbildgebung
Verlag:IOP Science
Jahrgang/Band:168
Ausgabe/Heft:5
Erste Seite:054521
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Electrochemical impedance spectra; Gas diffusion layers; HT-PEFC; Lattice Boltzmann simulation; Phosphoric acid
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
DOI:10.1149/1945-7111/abff03
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:29.11.2021
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:29.11.2021
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.