• Treffer 20 von 21
Zurück zur Trefferliste

Heating processes during storage of Miscanthus chip piles and numerical simulations to predict self-ignition

  • Miscanthus x Giganteus (Miscanthus) energy crop was examined at laboratory scale to assess its self-heating and self-ignition risks during storage. Chipped Miscanthus (18 mm) from February and March harvests, in 2012, were assessed as well as ground Miscanthus (3 mm) from the March harvest. February and March crops had moisture contents of 41.6 and 20.2%, respectively. Self-ignition temperatures were independent of moisture although moisture did affect the time from the beginning of storage until storage temperature was reached. Ground Miscanthus had lower self-ignition temperatures than chipped Miscanthus. Isothermal respirometric tests carried out showed increase risk of self-heating in the February crop compared to the March crop due to increased microbial activity. Numerical simulations were used to determine critical enhanced start temperatures, e.g. caused by microbial decomposition, of the stored Miscanthus. Safe storage conditions have been derived from the investigations. TheMiscanthus x Giganteus (Miscanthus) energy crop was examined at laboratory scale to assess its self-heating and self-ignition risks during storage. Chipped Miscanthus (18 mm) from February and March harvests, in 2012, were assessed as well as ground Miscanthus (3 mm) from the March harvest. February and March crops had moisture contents of 41.6 and 20.2%, respectively. Self-ignition temperatures were independent of moisture although moisture did affect the time from the beginning of storage until storage temperature was reached. Ground Miscanthus had lower self-ignition temperatures than chipped Miscanthus. Isothermal respirometric tests carried out showed increase risk of self-heating in the February crop compared to the March crop due to increased microbial activity. Numerical simulations were used to determine critical enhanced start temperatures, e.g. caused by microbial decomposition, of the stored Miscanthus. Safe storage conditions have been derived from the investigations. The numerical simulations demonstrated that self-ignition was possible in Miscanthus chip piles with a height greater than 6 m if there was significant heat release from microbiological activity. Reliable assessment of self-heating and self-ignition risks in large scale Miscanthus energy crop clamps or piles are required to prevent losses due to decomposition and fire damage.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:C.D. Everard, Martin Schmidt, K.P. McDonnell, J. Finnan
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of loss prevention in the process industries
Jahr der Erstveröffentlichung:2014
Verlag:Butterworth
Verlagsort:Guildford, Surrey
Jahrgang/Band:30
Erste Seite:188
Letzte Seite:196
Freie Schlagwörter:Biomass storage; Hot storage test; Miscanthus x Giganteus; Numerical simulations; Respirometric rates; Self-heating; Self-ignition
DOI:10.1016/j.jlp.2014.06.003
ISSN:0950-4230
ISSN:1873-3352
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:12.08.2014
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.