• Treffer 2 von 16
Zurück zur Trefferliste

Development of analytical method and certified reference material for zearalenone in edible oils

  • Quality and safety of food products require their reliable analysis. Contaminants, in particular mycotoxins, are key-components for food safety. About 25 % of the world's food crops are contaminated with mycotoxins posing a severe health risk to humans. In order to strengthen food safety and consumer protection the European Commission (EC) set maximum levels for priority mycotoxins in certain foods for human consumption. In 2013, the EC and CEN (European Committee for Standardization) started an initiative to standardize analytical methods for mycotoxins in food which gained increasing relevance, e.g. zearalenone (ZEN).[1] ZEN, an estrogenic mycotoxin produced by several Fusarium species, contaminates cereal crops worldwide. Due to its lipophilic nature ZEN is often found in edible oils (particularly in maize germ oils) derived from contaminated plants. Therefore, an European maximum level of 400 µg/kg is currently in force.[2] To perform reliable food analysis a sustainableQuality and safety of food products require their reliable analysis. Contaminants, in particular mycotoxins, are key-components for food safety. About 25 % of the world's food crops are contaminated with mycotoxins posing a severe health risk to humans. In order to strengthen food safety and consumer protection the European Commission (EC) set maximum levels for priority mycotoxins in certain foods for human consumption. In 2013, the EC and CEN (European Committee for Standardization) started an initiative to standardize analytical methods for mycotoxins in food which gained increasing relevance, e.g. zearalenone (ZEN).[1] ZEN, an estrogenic mycotoxin produced by several Fusarium species, contaminates cereal crops worldwide. Due to its lipophilic nature ZEN is often found in edible oils (particularly in maize germ oils) derived from contaminated plants. Therefore, an European maximum level of 400 µg/kg is currently in force.[2] To perform reliable food analysis a sustainable metrological infrastructure is of major importance enabling the quantification of priority mycotoxins (here: ZEN). To achieve this goal an integrated approach is needed targeted at the development of validated analytical methods and certified reference materials (CRM). A highly selective method for ZEN in edible oils will be presented, based on solid phase extraction (SPE) using hydrazine-functionalized particles. This method was developed for manual application using commercial SPE cartridges as well as for automated SPE-HPLC online coupling. While ZEN is covalently coupled to the solid phase by means of a hydrazone bond, undesired matrix components can be removed very efficiently. Finally, ZEN is decoupled from the solid phase, leading to highly purified extracts which are measured by HPLC-FLD. The development of the first European Reference Material (ERM®) for ZEN in maize germ oil (ERM®-BC715) will be presented and discussed. This ERM®-project underpins the urgent need for mycotoxin-CRMs to support food safety and public health. [1] European Commission (EC) Mandate M/520 (2013) for standardisation addressed to CEN for methods of analysis for mycotoxins in food. [2] Commission Regulation (EC) No 1126/2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Poster_Koch_ANAKON_2017.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Julia Keller, Dominique Lörchner
Koautoren/innen:Juliane Riedel, Tatjana Rasenko, Robert Köppen, Matthias Koch
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.7 Organische Spuren- und Lebensmittelanalytik
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Analytical method; Food safety; Mycotoxins; Reference material
Themenfelder/Aktivitätsfelder der BAM:Analytical Sciences
Veranstaltung:Anakon
Veranstaltungsort:Tübingen, Germany
Beginndatum der Veranstaltung:03.04.2017
Enddatum der Veranstaltung:06.04.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:18.04.2017
Referierte Publikation:Nein