• Treffer 6 von 139
Zurück zur Trefferliste

Temperature distribution in powder beds during 3D printing

  • Purpose – This purpose of this paper is to report about the temperature distribution in metal and ceramic powder beds during 3D printing. The differing powders are thoroughly characterized in terms of thermal conductivity, thermal diffusivity, emissivity spectra and density. Design/methodology/approach – The temperature distribution was measured in a 3D printing appliance (Prometal R1) with the help of thin thermocouples (0.25 mm diameter) and thermographic imaging. Temperatures at the powder bed surface as well as at differing powder bed depths were determined. The thermal conductivity, thermal diffusivity and emissivity spectra of the powders were measured as well. Numerical simulation was used to verify the measured temperatures. Findings – The ceramic powder heated up and cooled down more quickly. This finding corresponds well with numerical simulations based on measured values for thermal conductivity and thermal diffusivity as well as emissivity spectra. An observed colorPurpose – This purpose of this paper is to report about the temperature distribution in metal and ceramic powder beds during 3D printing. The differing powders are thoroughly characterized in terms of thermal conductivity, thermal diffusivity, emissivity spectra and density. Design/methodology/approach – The temperature distribution was measured in a 3D printing appliance (Prometal R1) with the help of thin thermocouples (0.25 mm diameter) and thermographic imaging. Temperatures at the powder bed surface as well as at differing powder bed depths were determined. The thermal conductivity, thermal diffusivity and emissivity spectra of the powders were measured as well. Numerical simulation was used to verify the measured temperatures. Findings – The ceramic powder heated up and cooled down more quickly. This finding corresponds well with numerical simulations based on measured values for thermal conductivity and thermal diffusivity as well as emissivity spectra. An observed color change at the metal powder has only little effect on emissivity in the relevant wavelength region. Research limitations/implications – It was found that thermocouple-based temperature measurements at the powder bed surface are difficult and these results should be considered with caution. Practical implications – The results give practitioners valuable information about the transient temperature evolution for two widely used but differing powder systems (metal, ceramic). The paramount importance of powder bed porosity for thermal conductivity was verified. Already small differences in thermal conductivity, thermal diffusivity and hence volumetric heat capacity lead to marked differences in the transient temperature evolution. Originality/value – The paper combines several techniques such as temperature measurements, spectral emissivity measurements, measurements of thermal conductivity and diffusivity and density measurements. The obtained results are put into a numerical model to check the obtained temperature data and the other measured values for consistency. This approach illustrates that determinations of surface temperatures of the powder beds are difficult.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Martin Dreßler, Mathias Röllig, Martin Schmidt, A. Maturilli, J. Helbert
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Rapid prototyping journal
Jahr der Erstveröffentlichung:2010
Verlag:MCB University Press
Verlagsort:Bradford
Jahrgang/Band:16
Ausgabe/Heft:5
Erste Seite:328
Letzte Seite:336
Freie Schlagwörter:Ceramics; Heat transfer; Metals; Powders; Printers; Rapid prototypes
DOI:10.1108/13552541011065722
ISSN:1355-2546
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:30.09.2010
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.