• Treffer 3 von 5
Zurück zur Trefferliste

Experimental investigation into the consequences of release of liquified hydrogen onto and under water

  • Large-scale experiments have been performed to investigate the possible consequences of realistic amounts of liquified hydrogen (LH2) encountering water. The experiments aimed at simulating an accidental release of LH2 during especially the fuelling of a ship. For liquified natural gas (LNG) it has been demonstrated that when spilled onto water the evaporation rate can be that high that physical explosions occur which are referred as rapid phase transitions (RPTs). It cannot be excluded that RPTs are also possible in the case of LH2. The tests were performed in a 10 m x 10 m x 1.5 m basin filled with water, at the Test Site Technical Safety of the Bundesanstalt für Materialforschung und –prüfung (BAM) in Horstwalde, Germany within a research cooperation between BAM and Gexcon as part of the SH2IFT program. LH2 releases were established releasing directly from a trailer carrying LH2 through a long flexible double vacuum insulated transfer line. The releases occurred from a height of 50Large-scale experiments have been performed to investigate the possible consequences of realistic amounts of liquified hydrogen (LH2) encountering water. The experiments aimed at simulating an accidental release of LH2 during especially the fuelling of a ship. For liquified natural gas (LNG) it has been demonstrated that when spilled onto water the evaporation rate can be that high that physical explosions occur which are referred as rapid phase transitions (RPTs). It cannot be excluded that RPTs are also possible in the case of LH2. The tests were performed in a 10 m x 10 m x 1.5 m basin filled with water, at the Test Site Technical Safety of the Bundesanstalt für Materialforschung und –prüfung (BAM) in Horstwalde, Germany within a research cooperation between BAM and Gexcon as part of the SH2IFT program. LH2 releases were established releasing directly from a trailer carrying LH2 through a long flexible double vacuum insulated transfer line. The releases occurred from a height of 50 cm above and 30 cm under the water surface both pointing downwards and 30 cm under the water surface pointing along the water surface too. The release rate was determined based on the weight loss rate of the road tanker which was placed onto load cells. Special blast pressure sensors were used to measure the shock waves generated by the release processes both in the water and in the air. At several locations the gas concentration was measured. Heat radiation was measured at 3 distances from the point of release. High speed, Infrared (IR) and normal cameras were used to record events and to follow the gas cloud behaviour in time. This includes cameras mounted on a UAV and underwater cameras. Two weather stations were used to measure wind speed, wind direction, temperature and humidity during all tests performed. All investigated release configurations resulted in a very chaotic LH2-water mixing zone, causing considerable evaporation but only minor over pressures. The main phenomenon observed was an ignition of the released gas cloud, resulting in significant blast wave overpressures and heat radiation to the surroundings. The location of the ignition occurred in free air at some distance from the instrumentation and release location.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Kluge_Habib_RPT_Ishpmie2022.pdf
    eng
  • Titelblatt_Impressum_ISHPMIE2022.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Abdel Karim Habib, Martin Kluge, Kees van Wingerden
Persönliche Herausgeber*innen:Michael Beyer, Arnas Lucassen
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Proceedings of the 14th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:2 Prozess- und Anlagensicherheit
2 Prozess- und Anlagensicherheit / 2.1 Sicherheit von Energieträgern
Herausgeber (Institution):Physikalisch-Technische Bundesanstalt
Erste Seite:182
Letzte Seite:196
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Gas cloud explosion; Heat radiation; LH2; RPT; Release
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
Veranstaltung:14th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE 2022)
Veranstaltungsort:Braunschweig, Germany
Beginndatum der Veranstaltung:11.07.2022
Enddatum der Veranstaltung:15.07.2022
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:30.01.2024
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.