• Treffer 2 von 0
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-403523

Signalverarbeitung zur hochauflösenden Reinheitsgradbestimmung

  • Basierend auf aktuellen Regelwerken (SEP1927 und ASTM E588) stehen Möglichkeiten zur nichtinvasiven Beurteilung des zu untersuchenden Werkstoffes, in verschiedenen Qualitätsstufen bis zu einer Vergleichsfehlergröße von bis zu 300 Mikrometer zur Verfügung. Allerdings ist der realistische Nachweis und die Beurteilung von künstlichen sowie von natürlichen Fehlern kleiner 500 Mikrometer nur unter optimalen Voraussetzungen (bspw. Wahl des Prüfkopfes, Geometrie des Prüfobjektes, orts- bzw. zeitliche Auflösung der Messdatenaufnahme) und unter Einsatz von geeigneten Signalverarbeitungsalgorithmen möglich. Im Rahmen von Ringversuchen wurden daher verschiedene Methoden zur Aufbereitung der zu erfassenden Messdaten entwickelt und an verschiedenen Bauteilgeometrieen und Werkstoffen getestet. Dabei stellten sich der spektrale Tiefenausgleich (SDAC) und die nichtlineare Bewertung einzelner Frequenzkomponenten des Nutzsignals als sehr vielversprechend heraus und die Nachweisbarkeit kleiner Fehler -Basierend auf aktuellen Regelwerken (SEP1927 und ASTM E588) stehen Möglichkeiten zur nichtinvasiven Beurteilung des zu untersuchenden Werkstoffes, in verschiedenen Qualitätsstufen bis zu einer Vergleichsfehlergröße von bis zu 300 Mikrometer zur Verfügung. Allerdings ist der realistische Nachweis und die Beurteilung von künstlichen sowie von natürlichen Fehlern kleiner 500 Mikrometer nur unter optimalen Voraussetzungen (bspw. Wahl des Prüfkopfes, Geometrie des Prüfobjektes, orts- bzw. zeitliche Auflösung der Messdatenaufnahme) und unter Einsatz von geeigneten Signalverarbeitungsalgorithmen möglich. Im Rahmen von Ringversuchen wurden daher verschiedene Methoden zur Aufbereitung der zu erfassenden Messdaten entwickelt und an verschiedenen Bauteilgeometrieen und Werkstoffen getestet. Dabei stellten sich der spektrale Tiefenausgleich (SDAC) und die nichtlineare Bewertung einzelner Frequenzkomponenten des Nutzsignals als sehr vielversprechend heraus und die Nachweisbarkeit kleiner Fehler - im Bereich von 100 - 500 μm - konnte erfolgreich gesteigert werden.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Daniel Kotschate
Koautor*innen:Dirk Gohlke
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Deutsch
Titel des übergeordneten Werkes (Deutsch):Jahrestagung der DGZfP
Jahr der Erstveröffentlichung:2017
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP)
Jahrgang/Band:BB 162
Erste Seite:P21, 1
Letzte Seite:2
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Materialcharakterisierung; Reinheitsgradbestimmung; Ultraschalltauchtechnik
Veranstaltung:DGZfP Jahrestagung
Veranstaltungsort:Koblenz, Germany
Beginndatum der Veranstaltung:22.05.2017
Enddatum der Veranstaltung:24.05.2017
URN:urn:nbn:de:kobv:b43-403523
ISBN:978-3-940283-85-6
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung-Keine Bearbeitung
Datum der Freischaltung:29.05.2017
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.