Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 3 von 23
Zurück zur Trefferliste

Heterogeneous photocatalysis - a promising method for the removal of environmental contaminants from water

  • In recent years advanced oxidation processes have become an important part of research due to their capacity to degrade many environmental pollutants during water treatment. Especially the heterogeneous photocatalysis is a promising method because it often results in a full mineralization of many hazardous organic compounds. However incomplete degradation reactions during this process can result in transformation products due to the oxidative conditions. The transformation products may have a higher toxicity than the precursor substances and are often only partly removed during the waste water treatment. Since a lot of these compounds are still unknown, the transformation products are not detected by target analysis used in sewage treatment plants and are often released into the aquatic ecosystems. Therefore, extensive and effective non-target analytical methods are necessary for the monitoring and identification of the transformation products which can be generated during waste waterIn recent years advanced oxidation processes have become an important part of research due to their capacity to degrade many environmental pollutants during water treatment. Especially the heterogeneous photocatalysis is a promising method because it often results in a full mineralization of many hazardous organic compounds. However incomplete degradation reactions during this process can result in transformation products due to the oxidative conditions. The transformation products may have a higher toxicity than the precursor substances and are often only partly removed during the waste water treatment. Since a lot of these compounds are still unknown, the transformation products are not detected by target analysis used in sewage treatment plants and are often released into the aquatic ecosystems. Therefore, extensive and effective non-target analytical methods are necessary for the monitoring and identification of the transformation products which can be generated during waste water treatment. Among various semiconductors, titanium dioxide (TiO2) is the most frequently used photocatalyst because of its inexpensiveness, non-toxicity, chemical stability and its high photocatalytic activity. If TiO2 is irradiated with light of an energy higher than the band gap of the semiconductor, electron-hole pairs are generated on the surface of the TiO2, resulting in the formation of active oxidized species such as hydroxyl radicals which can react with environmental pollutants. To study photocatalytic reactions, a model system has been developed to simulate environmental relevant conditions for photocatalytic reactions of organic substances on a laboratory scale. The commonly used pharmaceuticals metformin and gabapentin were selected as model substances because of their high input in waste water and the little information about their occurrence, behavior and fate in the environment. Metformin is the drug of choice for treating type 2 diabetes. The drug therapy for diabetes mellitus has increased significantly in recent years. More than half of the total amount of pharmaceuticals in the environment are the antidiabetic agent metformin and its major transformation product guanylurea. Gabapentin is an analogon of the neurotransmitter γ-aminobutyric acid (GABA) which is used as antiepileptic drug and for the treatment of neuropathic pain. Gabapentin is found in waste water influent in the high ng/L range. First results of the optimization of the photocatalyst and its application are shown.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • NonTarget2016_Goedecke_final_160525.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Caroline Goedecke
Koautor*innen:I. Fettig, Christian Piechotta, Regine Sojref
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:non target analysis; photocatalysis; transformation
Veranstaltung:NonTarget 2016
Veranstaltungsort:Ascona, Switzerland
Beginndatum der Veranstaltung:29.05.2016
Enddatum der Veranstaltung:03.06.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:08.06.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.