• Treffer 2 von 2
Zurück zur Trefferliste

Influence of simultaneous cyclic loading and external alkali supply on the alkali-silica reaction in concrete pavements

  • In recent years the German motorway network has seen an increase in the occurrence of damage to concrete road surfaces which can be attributed to the alkali-silica reaction (ASR). In view of the often drastically reduced life expectancy of road surfaces due to ASR, research activity in this field has notably increased. Alongside preventative measures in concrete technology, the main research focus up to now has been the development of performance-oriented testing procedures for ASR prevention. This included more specifically the accelerated simulation of climatic effects and external alkali penetration on road surfaces. The effects of mechanical pre-damage resulting from cyclic traffic loading and climatic impact had previously not been taken into consideration. Since 2011, the five-partner research group 1498 sponsored by the German Research Foundation (DFG) has been pursuing research on how simultaneous cyclic loading and external alkali penetration impacts destructive ASR in roadIn recent years the German motorway network has seen an increase in the occurrence of damage to concrete road surfaces which can be attributed to the alkali-silica reaction (ASR). In view of the often drastically reduced life expectancy of road surfaces due to ASR, research activity in this field has notably increased. Alongside preventative measures in concrete technology, the main research focus up to now has been the development of performance-oriented testing procedures for ASR prevention. This included more specifically the accelerated simulation of climatic effects and external alkali penetration on road surfaces. The effects of mechanical pre-damage resulting from cyclic traffic loading and climatic impact had previously not been taken into consideration. Since 2011, the five-partner research group 1498 sponsored by the German Research Foundation (DFG) has been pursuing research on how simultaneous cyclic loading and external alkali penetration impacts destructive ASR in road surface concretes. The depiction of the myriad degradation and transport processes necessary for an understanding of these effects requires close interaction between experiments and their multi-scale modelling. This paper aims to focus on the aforementioned experiments by means of innovative testing techniques. The research is founded on a series of cyclic fatigue tests performed on large-format beams, both with and without previous application of a sodium chloride (NaCl) solution, with simultaneous tracking of crack development. Subsequently, smaller test specimens were extracted from the pre-damaged beams for further experiments. These included the spatial visualization and quantification of fatigue-induced cracks using micro X-ray 3D-computed tomography (3D-CT). Additionally, the effects of fatigue-induced cracks on alkali transport were investigated using Laser-Induced Breakdown Spectroscopy (LIBS). Subsequent storage of the small-format test specimens, with and without cyclic pre-damage, in an ASR-conducive environment then provided initial findings on the influence of fatigue-induced predamage on the ASR.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 15ICAAR2016_191.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Frank WeiseORCiD, Birgit MengORCiD, Stephan PirskawetzORCiD, K. Voland
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):15th International Conference on Alkali-Aggregate reaction (ICAAR 2016)
Jahr der Erstveröffentlichung:2016
Erste Seite:Paper 191
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:alkali-silica-reaction; concrete pavements; damage monitoring; fatigue
Veranstaltung:15th International Conference on Alkali-Aggregate reaction (ICAAR 2016)
Veranstaltungsort:Sao Paulo, Brazil
Beginndatum der Veranstaltung:03.07.2016
Enddatum der Veranstaltung:07.07.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:17.08.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.