• Treffer 11 von 21
Zurück zur Trefferliste

Transient modeling of ultrasonic guided waves in circular viscoelastic waveguides for inverse material characterization

  • In this contribution, we present an efficient approach for the transient and time-causal modeling of guided waves in viscoelastic cylindrical waveguides in the context of ultrasonic material characterization. We use the scaled boundary finite element method (SBFEM) for efficient computation of the phase velocity dispersion. Regarding the viscoelastic behavior of the materials under consideration, we propose a decomposition approach that considers the real-valued frequency dependence of the (visco-)elastic moduli and, separately, of their attenuation. The modal expansion approach is utilized to take the transmitting and receiving transducers into account and to propagate the excited waveguide modes through a waveguide of finite length. The effectiveness of the proposed simulation model is shown by comparison with a standard transient FEM simulation as well as simulation results based on the exact solution of the complex-valued viscoelastic guided wave problem. Two material models areIn this contribution, we present an efficient approach for the transient and time-causal modeling of guided waves in viscoelastic cylindrical waveguides in the context of ultrasonic material characterization. We use the scaled boundary finite element method (SBFEM) for efficient computation of the phase velocity dispersion. Regarding the viscoelastic behavior of the materials under consideration, we propose a decomposition approach that considers the real-valued frequency dependence of the (visco-)elastic moduli and, separately, of their attenuation. The modal expansion approach is utilized to take the transmitting and receiving transducers into account and to propagate the excited waveguide modes through a waveguide of finite length. The effectiveness of the proposed simulation model is shown by comparison with a standard transient FEM simulation as well as simulation results based on the exact solution of the complex-valued viscoelastic guided wave problem. Two material models are discussed, namely the fractional Zener model and the anti-Zener model; we re-interpret the latter in terms of the Rayleigh damping model. Measurements are taken on a polypropylene sample and the proposed transient simulation model is used for inverse material characterization. The extracted material properties may then be used in computer-aided design of ultrasonic systems.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Bause_2015_Meas._Sci._Technol._26_095602.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:F. Bause, Hauke Gravenkamp, J. Rautenberg, B. Henning
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Measurement science and technology
Jahr der Erstveröffentlichung:2015
Verlag:IOP Publ. Ltd.
Verlagsort:Bristol
Jahrgang/Band:26
Ausgabe/Heft:9
Erste Seite:095602-1
Letzte Seite:095602-17
Freie Schlagwörter:Element method; Guided waves; Inverse problem; Scaled boundary finite; Ultrasonics; Viscoelasticity
DOI:10.1088/0957-0233/26/9/095602
ISSN:0957-0233
ISSN:1361-6501
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:27.08.2015
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.