• Treffer 2 von 64
Zurück zur Trefferliste

Analysis of O-ring seal failure in the context of radioactive waste containers

  • At BAM, which is a federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes assessment of elastomeric seals applied in the casks. Besides examining the low-temperature behaviour and irradiation effects of elastomeric seals, it is our goal to estimate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to five years. In order to assess sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings were aged as well. FurtherAt BAM, which is a federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes assessment of elastomeric seals applied in the casks. Besides examining the low-temperature behaviour and irradiation effects of elastomeric seals, it is our goal to estimate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to five years. In order to assess sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings were aged as well. Further methods characterising seal performance are compression stress relaxation (CSR) reflecting the loss of sealing force of a compressed seal over time, and compression set (CS) which represents the recovery behaviour of a seal after release from compression. Additionally, material properties such as hardness, elastic modulus, glass transition temperature and viscoelastic loss factor as well as relaxation and recovery behaviour are examined in order to understand the underlying ageing mechanisms in each material. For obtaining results closely related to practical conditions, O-rings with a full-scale cord diameter of 10 mm were aged. However, this set-up can lead to heterogeneous aging caused by diffusion-limited oxidation (DLO) effects, resulting in distorted bulk properties such as compression stress relaxation and compression set. However, if DLO-affected data is excluded, extrapolations of CS data are possible using time-temperature shifts and Arrhenius graphs. For selecting an appropriate end-of-lifetime criterion, leakage rate measurements were performed, since leakage rate is the only characteristic directly correlated to the performance of the sealing system. A significant increase in leakage rate was considered as the end of the lifetime. However, the O-rings remained leak tight under static conditions and even exhibited an improved, i.e. decreased leakage rate while other properties already indicated strong deterioration. These tests were extended by seal tests with fast partial decompression. Overall an update will be given on the current investigations and results and the planned activities.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • KHK2020_Poster_Jaunich.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Anja Kömmling
Koautor*innen:Dietmar Wolff, Matthias Jaunich
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:3 Gefahrgutumschließungen; Energiespeicher
3 Gefahrgutumschließungen; Energiespeicher / 3.4 Sicherheit von Lagerbehältern
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Ageing; Compression set; Seal
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Kerntechnische Entsorgung
Veranstaltung:Kautschuk Herbst Kolloquium 2022
Veranstaltungsort:Online meeting
Beginndatum der Veranstaltung:08.11.2022
Enddatum der Veranstaltung:11.11.2022
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:28.11.2022
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.