• Treffer 4 von 4
Zurück zur Trefferliste

Ageing of elastomeric seals for storage containers

  • At BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to audit the safety of casks designed for transport and/or storage of radioactive material. With regard to the requirements on long-term safety of the containers, it is necessary to evaluate the service lifetime of the elastomeric seals used in the containers. With ageing, the elastomers will gradually lose their elasticity and their ability for recovery, which might result in a leakage above the allowed level or in a release of radioactivity during an incident. It is important to know the rate of degradation and which property can be used as an practical and easily measurable end-of-lifetime criterion. For this reason, we devised ageing experiments on different kinds of elastomers, namely FKM, EPDM and HNBR. The former two are actually used in containers for radioactive wastes – either as auxiliary seal in casks containing high activity waste, or as main seal in casks for medium or lowAt BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to audit the safety of casks designed for transport and/or storage of radioactive material. With regard to the requirements on long-term safety of the containers, it is necessary to evaluate the service lifetime of the elastomeric seals used in the containers. With ageing, the elastomers will gradually lose their elasticity and their ability for recovery, which might result in a leakage above the allowed level or in a release of radioactivity during an incident. It is important to know the rate of degradation and which property can be used as an practical and easily measurable end-of-lifetime criterion. For this reason, we devised ageing experiments on different kinds of elastomers, namely FKM, EPDM and HNBR. The former two are actually used in containers for radioactive wastes – either as auxiliary seal in casks containing high activity waste, or as main seal in casks for medium or low activity waste. The latter is an often used seal material that is tested for comparative reasons. In our ageing program, these three materials are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) in order to extrapolate the data to service temperature using a suitable model. They are examined at logarithmic time intervals of several days up to 5 years. The samples are aged in their undeformed O-ring state as well as compressed between flanges with a deformation corresponding to the actual compression during service. Thus we can compare the ageing between relaxed and stressed sample. Additionally, we are ageing samples in flanges that allow leakage rate measurements. Other measurements include monitoring of the recovery force of the seal and the compression set. Furthermore, the samples are examined by thermal and dynamic-mechanical analysis for detecting changes in the glass transition temperature due to crosslinking or chain scission in the material. Besides, hardness is measured as a practical macroscopic indicator. Until now, we have analyzed samples aged up to 100 days. At the highest ageing temperature of 150 °C, the compressed EPDM has already reached a compression set of 95 %, while HNBR and FKM have reached 80 % and 30 %, respectively. Furthermore, HNBR has reached a Shore D hardness of 85, which is an immense increase after the initial value of 80 Shore A. However, when looking at the cross-section of the sample, it was obvious that only a layer of about 1 mm thickness has become so hard, while the inner part remained rubbery. This shows that there has been intense crosslinking mostly near the surface of the HNBR which forms a kind of oxygen diffusion barrier, inhibiting the thermooxidation of the inner part of sample which can retain elastic properties. In EPDM, the oxygen permeability is much greater, which leads to a more homogeneous degradation across the whole sample and thus resulted in a higher compression set. The low compression set of FKM shows the outstanding high-temperature properties of this material.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Anja Kömmling, Matthias Jaunich, Dietmar Wolff
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Annual Meeting on Nuclear Technology 2015
Jahr der Erstveröffentlichung:2015
Organisationseinheit der BAM:3 Gefahrgutumschließungen
3 Gefahrgutumschließungen / 3.4 Sicherheit von Lagerbehältern
Herausgeber (Institution):Kerntechnische Gesellschaft e.V. (KTG)
Verlag:INFORUM-Verl. u. Verwaltungsges.
Erste Seite:1
Letzte Seite:10(?)
Freie Schlagwörter:Aging; Cask; Compression; Elastomer; Lifetime; Rubber; Seal
Veranstaltung:Annual Meeting on Nuclear Technology 2015
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:2015-05-05
Enddatum der Veranstaltung:2015-05-07
ISBN:978-3-926956-98-9
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein