• Treffer 1 von 1
Zurück zur Trefferliste

Neutron radiation shielding material polyethylene: consequences of gamma irradiation

  • High and ultra-high molecular weight polyethylenes are high performance materials, which are predestined for a wide range of applications due to characteristics like high density, low weight, good dimensional stability, high chemical resistance, and high hydrogen content. These polymers are used in two demanding areas: as implant material in medical technology (only ultra-high molecular weight polyethylenes) and as a component for neutron shielding purposes in casks for storage and transport of radioactive waste. In the medical field (joint replacements) as well as during neutron radiation shielding application, high and ultra-high molecular weight polyethylenes are exposed to gamma irradiation: in the first case requested as sterilization process and for surface-crosslinking and in the second case existing as a side effect of inserting the radioactive material in the cask. Given that polyethylene as shielding material has to withstand any type of degradation affecting safetyHigh and ultra-high molecular weight polyethylenes are high performance materials, which are predestined for a wide range of applications due to characteristics like high density, low weight, good dimensional stability, high chemical resistance, and high hydrogen content. These polymers are used in two demanding areas: as implant material in medical technology (only ultra-high molecular weight polyethylenes) and as a component for neutron shielding purposes in casks for storage and transport of radioactive waste. In the medical field (joint replacements) as well as during neutron radiation shielding application, high and ultra-high molecular weight polyethylenes are exposed to gamma irradiation: in the first case requested as sterilization process and for surface-crosslinking and in the second case existing as a side effect of inserting the radioactive material in the cask. Given that polyethylene as shielding material has to withstand any type of degradation affecting safety relevant aspects to be applicable for long-term radiation shielding purposes for instance over a period of 40 years, the durability of the material is of special interest. High molecular weight polyethylene (HMW-PE; LUPOLEN 5261Z; Lyondell Basell) and ultra-high molecular weight polyethylene (UHMW-PE; GUR 4120; Ticona) were subjected to gamma radiation and afterwards thermally treated. The gamma doses used are in the range of 50 to 600 kGy and irradiation takes place at RT using a Co-60 source. The planned thermal treatment will take place at a temperature of 125 °C for periods of minimum 30 days and maximum of five years. With the applied conventional analytical techniques it is possible to detect structural changes of both types of polyethylene induced by gamma irradiation and certainly of thermal treatment. Through gamma irradiation melting temperature, crystallinity, and density, respectively increased. Furthermore both polyethylenes get oxidized and cross-linked. With regard to the special application as neutron radiation shielding material in casks for storage and transport of radioactive materials, the impact of irradiation lead to changes of material properties. A consolidated view indicates that the detected changes of the irradiated (U)HMW-PE are not safety relevant for long-term neutron radiation shielding purposes over a period of 40 years in Germany.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Neutron Radiation Shielding Material Polyethylene.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Kerstin von der Ehe, Anja KömmlingORCiD, Dietmar Wolff
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):WM2015 Conference (Proceedings)
Jahr der Erstveröffentlichung:2015
Herausgeber (Institution):WM Symposia, Inc.
Erste Seite:15062, 1
Letzte Seite:10
Freie Schlagwörter:Crosslinking; DSC; Gamma radiation; HMW; IR; Polyehtylene
Veranstaltung:WM2015 Conference
Veranstaltungsort:Phoenix, Arizona, USA
Beginndatum der Veranstaltung:15.03.2015
Enddatum der Veranstaltung:19.03.2015
ISBN:978-0-9828171-4-8
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.