• Treffer 7 von 7
Zurück zur Trefferliste

Laser beam welding of thick materials under the influence of local reduced ambient pressure

  • The development of the vapour plume during the laser beam welding of metals with propagation directions along the laser beam axis leads to a reduction of the absorbed laser power in the keyhole. The main reasons are the scattering of the laser radiation on the condensed phase of metallic vapour as well as the defocusing of the laser beam due to the density gradient in the vapour plume. These unfavourable effects can be significantly mitigated by the application of a reduced ambient pressure thus decreasing the interaction between the laser beam and evaporation products, which leads to more stable welding process and results in increased penetration depth, as known from previous studies. A conventional technique use a vacuum chamber principle, similar to that, used for electron beam welding. Application of this technique is restricted by the chamber size and reduces thus the advantages of this approach especially for large components. We demonstrate a possibility of mobile local vacuumThe development of the vapour plume during the laser beam welding of metals with propagation directions along the laser beam axis leads to a reduction of the absorbed laser power in the keyhole. The main reasons are the scattering of the laser radiation on the condensed phase of metallic vapour as well as the defocusing of the laser beam due to the density gradient in the vapour plume. These unfavourable effects can be significantly mitigated by the application of a reduced ambient pressure thus decreasing the interaction between the laser beam and evaporation products, which leads to more stable welding process and results in increased penetration depth, as known from previous studies. A conventional technique use a vacuum chamber principle, similar to that, used for electron beam welding. Application of this technique is restricted by the chamber size and reduces thus the advantages of this approach especially for large components. We demonstrate a possibility of mobile local vacuum application, which allows to generate a reduced pressure only in small region around the keyhole. By using of specially designed mobile pressure lock which can be moved along the welding direction absolute pressure of around 200 mbar could be obtained. This is sufficient to increase the welding depth by around 50%. Coupons from S355 were welded with an incremental laser power from 5 kW to 12 kW at atmospheric pressure and compared to those welded at ambient pressure of 200 mbar. The evaluation of the longitudinal section revealed an increase of the welding depth by about 35%. Furthermore, the welding trials in butt joint configuration on 15 mm thick plates at various laser beam power performed for atmospheric and reduced ambient pressure of around 200 mbar. The increase in welding depth up to 40% was established for reduced pressure. Particularly, low welding speeds under reduced pressure were especially advantageous in terms of increasing the welding depth.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Schneider_Laser beam welding.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:André Schneider, Andrey GumenyukORCiD, Michael RethmeierORCiD
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):VIII BTLA 2015 - 8th International conference "Beam technologies & laser application"
Jahr der Erstveröffentlichung:2015
Erste Seite:45
Letzte Seite:46
Freie Schlagwörter:High power laser beam welding; Keyhole; Local reduced pressure; Mobile vacuum; Vapour plume
Veranstaltung:VIII BTLA 2015 - 8th International conference "Beam technologies & laser application"
Veranstaltungsort:St. Petersburg, Russia
Beginndatum der Veranstaltung:21.09.2015
Enddatum der Veranstaltung:24.09.2015
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.