Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 2 von 12
Zurück zur Trefferliste

Ultraschallausbreitung in periodischen Strukturen - Simulation und Experiment

  • Die Untersuchung von Ultraschallausbreitung in periodischen Strukturen ist aktuell von großem Interesse für eine zielgerichtete Beeinflussung der Schallausbreitung. Die bekanntesten Vertreter periodischer Strukturen sind die sogenannten phononischen Kristalle. Als phononischen Kristall bezeichnet man eine periodische Struktur bestehend aus einer Matrix, in die Störungen aus einem zweiten Material eingebracht worden ist. Dabei unterscheiden sich Matrixmaterial und das eingebrachte Material sehr stark in ihren akustischen Eigenschaften. Ein phononischer Kristall erzeugt Bandlücken, in denen die Schalltransmission durch den Kristall vollständig unterbunden ist. Außerhalb der Bandlücken hingegen findet eine ungehinderte Schallausbreitung statt. Diese speziellen Eigenschaften können beispielsweise dazu genutzt werden, frequenzselektive Wellenleiter zu konzipieren oder Schallfelder zu fokussieren. Die Kristallstrukturen können anhand der Anzahl der Dimensionen, in welchen eineDie Untersuchung von Ultraschallausbreitung in periodischen Strukturen ist aktuell von großem Interesse für eine zielgerichtete Beeinflussung der Schallausbreitung. Die bekanntesten Vertreter periodischer Strukturen sind die sogenannten phononischen Kristalle. Als phononischen Kristall bezeichnet man eine periodische Struktur bestehend aus einer Matrix, in die Störungen aus einem zweiten Material eingebracht worden ist. Dabei unterscheiden sich Matrixmaterial und das eingebrachte Material sehr stark in ihren akustischen Eigenschaften. Ein phononischer Kristall erzeugt Bandlücken, in denen die Schalltransmission durch den Kristall vollständig unterbunden ist. Außerhalb der Bandlücken hingegen findet eine ungehinderte Schallausbreitung statt. Diese speziellen Eigenschaften können beispielsweise dazu genutzt werden, frequenzselektive Wellenleiter zu konzipieren oder Schallfelder zu fokussieren. Die Kristallstrukturen können anhand der Anzahl der Dimensionen, in welchen eine Schallausbreitung unterbunden wird, unterteilt werden. So verhindert ein eindimensionaler Kristall nur die Schallausbreitung in eine Raumrichtung, wohingegen ein zwei- oder dreidimensionaler Kristall die Schallausbreitung in mehreren Raumrichtungen unterbindet. Für technische Anwendungen sind aufgrund ihrer einfachen Fertigung insbesondere ein- und zweidimensionale Strukturen von Interesse. In den vorgestellten Arbeiten werden ein- und zweidimensionale Kristalle theoretisch und experimentell untersucht. Für den eindimensionalen Fall wurde eine entartete Form des phonischen Kristalls gewählt, wobei ein Vollzylinder mit periodischer Querschnittsänderung betrachtet wurde. Ziel ist es dabei, die Schallausbreitung in axialer Richtung zu verhindern. Inspiriert wurde diese Anordnung durch die in [1] vorgestellte Tubular-Bell-Geometrie und dient als Vorarbeit für die Entwicklung eines Sensorsystems. Im Falle des zweidimensionalen Kristalls wird die Schallausbreitung in einer Platte mit regelmäßigen Bohrungen untersucht. Hier soll keine Schallausbreitung in der Ebene stattfinden. Als Voruntersuchungen werden zunächst Berechnungen mit Hilfe der Finiten Elementen Methode (FEM) und der Scaled Boundary Finite Element Method (SBFEM) durchgeführt. Für die Berechnung der Dispersionskurven der Strukturen wurde COMSOL Multiphysics genutzt. Die hierbei gewonnenen Erkenntnisse liefern eine Vorhersage der Übertragungseigenschaften der Strukturen. Zur Simulation der Schallausbreitung in der eindimensionalen Struktur wird ein effizienter, achsensymmetrischer Ansatz der SBFEM verwendet. Hierbei entsteht ein numerisches Modell mit einer sehr geringen Anzahl an Freiheitsgraden. Diese effiziente Beschreibung ermöglicht eine zielgerichtete Optimierung der Geometrie der Struktur in Hinblick auf die geforderten akustischen Eigenschaften. Anhand der Simulationsergebnisse werden Testkörper für beide Strukturen gefertigt und deren Übertragungsverhalten im Vergleich mit den numerischen Ergebnissen experimentell überprüft. [1] – Lucklum R., Zubtsov M., Pennec Y. – Tubular Bell – Ein neuartiger Ultraschall-Rohrsensor, 3. Workshop des Fachausschusses der DEGA e.V., Messtechnische Anwendung von Ultraschall 20.06-22.06.2016, Kloster Drübeckzeige mehrzeige weniger

Volltext Dateien herunterladen

  • Ultraschallausbreitung in periodischen Strukturen.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Paul Wasmer
Koautor*innen:Veith Rathjen, Gerald Hönig, Jens Prager
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Deutsch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.4 Akustische und elektromagnetische Verfahren
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Phononisch Kristall; Sensorentwicklung
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Veranstaltung:4. Workshop des Fachausschusses Ultraschall
Veranstaltungsort:Drübeck - Ilsenburg, Germany
Beginndatum der Veranstaltung:18.06.2018
Enddatum der Veranstaltung:20.06.2018
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:25.06.2018
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.