• Treffer 44 von 248
Zurück zur Trefferliste

Further research on cask impact limiter needed?

  • Transport and storage casks for medium and high level radioactive waste are subjected to extreme heavy loads during the accidental drop scenarios prescribed by IAEA regulations and national storage acceptance criteria. Subsequently, considerable efforts have been made to optimize impact limiting structures aiming to reduce cask stresses and deformations. Though, their benefits can only fully be exploited, if the energy absorbing behavior is reliable simulated by numerical models which play an increasingly important role in safety assessments. BAM has had conducted the 5-years research project ENREA in order to overcome the problems caused by the use of simplified, not sufficiently validated or even defective computational concepts for damping materials. While major results of the just recently completed program will be presented, the focus is laid on the question whether these Outputs provide a solid foundation for approximating impact limiting structures in all relevantTransport and storage casks for medium and high level radioactive waste are subjected to extreme heavy loads during the accidental drop scenarios prescribed by IAEA regulations and national storage acceptance criteria. Subsequently, considerable efforts have been made to optimize impact limiting structures aiming to reduce cask stresses and deformations. Though, their benefits can only fully be exploited, if the energy absorbing behavior is reliable simulated by numerical models which play an increasingly important role in safety assessments. BAM has had conducted the 5-years research project ENREA in order to overcome the problems caused by the use of simplified, not sufficiently validated or even defective computational concepts for damping materials. While major results of the just recently completed program will be presented, the focus is laid on the question whether these Outputs provide a solid foundation for approximating impact limiting structures in all relevant configurations. So far, material models have been implemented for spruce, Polyurethane foams and damping concrete based mainly on small and medium scale compression test results. The experimental program performed at BAM comprised likewise guided drop tests and, especially for concrete, penetration tests. Although the resulting numerical simulations showed good agreement with measured values, it turned out to be necessary to consider further effects with regard to e.g. multiaxial stress States, shearfailures of shock absorbing components and their interaction with enclosed or enclosing structures. Thus, the strengths and application constraints of the actual models will be shown as well as details about further research needs, if any.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Further research on cask impact limiter needed.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Eva Maria Kasparek, Holger Völzke
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):RAMTRANSPORT 2015 - International conference on the radioactive materials transport and storage (Proceedings)
Jahr der Erstveröffentlichung:2015
Herausgeber (Institution):Nuclear institute (ni)
Erste Seite:1
Letzte Seite:8
Freie Schlagwörter:Damping concrete; Numerical model; Polyurethane foam; Radioactive waste storage cask; Shock absorber
Veranstaltung:RAMTRANSPORT 2015 - International conference on the radioactive materials transport and storage
Veranstaltungsort:Oxford, UK
Beginndatum der Veranstaltung:19.05.2015
Enddatum der Veranstaltung:21.05.2015
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.