Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 1 von 4
Zurück zur Trefferliste

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Due to the recent widespread application of nanomaterials to biological systems, a careful consideration of their physiological impact is required. This demands an understanding of the complex processes at the bio–nano interface. Therefore, a comprehensive and accurate characterization of the material under physiological conditions is crucial to correlate the observed biological impact with defined colloidal properties. As promising candidates for biomedical applications, two SiO2-based nanomaterial systems were chosen for extensive size characterization to investigate the agglomeration behavior under physiological conditions. To combine the benefits of different characterization techniques and to compensate for their respective drawbacks, transmission electron microscopy, dynamic light scattering and asymmetric flow field-flow fractionation were applied. The investigated particle systems were (i) negatively charged silica particles and (ii) poly(organosiloxane) particles offeringDue to the recent widespread application of nanomaterials to biological systems, a careful consideration of their physiological impact is required. This demands an understanding of the complex processes at the bio–nano interface. Therefore, a comprehensive and accurate characterization of the material under physiological conditions is crucial to correlate the observed biological impact with defined colloidal properties. As promising candidates for biomedical applications, two SiO2-based nanomaterial systems were chosen for extensive size characterization to investigate the agglomeration behavior under physiological conditions. To combine the benefits of different characterization techniques and to compensate for their respective drawbacks, transmission electron microscopy, dynamic light scattering and asymmetric flow field-flow fractionation were applied. The investigated particle systems were (i) negatively charged silica particles and (ii) poly(organosiloxane) particles offering variable surface modification opportunities (positively charged, polymer coated). It is shown that the surface properties primarily determine the agglomeration state of the particles and therefore their effective size, especially under physiological conditions. Thus, the biological identity of a nanomaterial is clearly influenced by differentiating surface properties.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2190-4286-5-188.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:C. Bantz, Olga Koshkina, Thomas Lang, H.-J. Galla, C.J. Kirkpatrick, R.H. Stauber, M. Maskos
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Beilstein journal of nanotechnology
Jahr der Erstveröffentlichung:2014
Verlagsort:Frankfurt, M.
Jahrgang/Band:5
Erste Seite:1774
Letzte Seite:1786
Freie Schlagwörter:AF-FFF; Asymetrical flow field-flow fractionation; Characterization; Colloids; Cryo-TEM; DLS; Dynamic light scattering; FFF; Field-flow fractionation; Nanomaterial characterization; Nanoparticles; PCS; Physiological conditions; Polyorganosiloxane; Silica; Silica nanoparticles; Siloxane; Siloxane nanoparticles; Surface properties; TEM; Transmission electron microscopy
DOI:10.3762/bjnano.5.188
ISSN:2190-4286
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.