• Treffer 1 von 37
Zurück zur Trefferliste

Influence of Hydrogen Uptake and Diffusion in Structural Components in the Field of Renewable Energy

  • Great efforts are invested worldwide in the development of efficient electrolysis processes, fuel cells technologies and hydrogen transport and storage infrastructures. This includes the exploitation of existing gas-grid infrastructure for the injection of hydrogen. Considering transport and storage facilities, the utilization of gaseous hydrogen can be divided into two main groups which are differentiating in the pressure regime. Fueling stations are operating in high pressure (>800 bar) and high purity and therefore use austenitic stainless steels in their compression systems. On the other hand, existing gas infrastructure where the natural gas is transported across long distances is usually operating with up to 300 bar. In this case the pipe-systems consist of several steel classes, mainly low alloyed steels in which the surface quality and the gas mixture are strongly varying. Even though ingress of hydrogen can lead to catastrophic failures in all steels, its exact impact onGreat efforts are invested worldwide in the development of efficient electrolysis processes, fuel cells technologies and hydrogen transport and storage infrastructures. This includes the exploitation of existing gas-grid infrastructure for the injection of hydrogen. Considering transport and storage facilities, the utilization of gaseous hydrogen can be divided into two main groups which are differentiating in the pressure regime. Fueling stations are operating in high pressure (>800 bar) and high purity and therefore use austenitic stainless steels in their compression systems. On the other hand, existing gas infrastructure where the natural gas is transported across long distances is usually operating with up to 300 bar. In this case the pipe-systems consist of several steel classes, mainly low alloyed steels in which the surface quality and the gas mixture are strongly varying. Even though ingress of hydrogen can lead to catastrophic failures in all steels, its exact impact on the mechanical properties, as well as its interaction with the surface, microstructure and lattice and the underlying mechanisms remain unclear. Therefore, research on the impact of gaseous hydrogen in pressure vessels and pipes has clearly an integral part on the path to safe and sustainable use of the different components along the different chains. This becomes even more relevant considering the influence of impurities in the gas, e.g. sulfur and with the introduction of new production technologies, such as additive manufacturing, into the market. Determination of these interactions and impact that might lead to the degradation of the properties can allow a safe use of steels in present and future hydrogen-based energy applications. The following contribution gives an overview of the problem and introduction to the conventional and innovative tools used and developed nowadays to analyze it. For this purpose, materials were loaded with hydrogen by electrochemical means and under high pressure and elevated temperatures. The results presented provide an invaluable insight into the impact of hydrogen on the integrity of selected steels used in the two mentioned above applications. This work is part of an ongoing research in which mechanical, chemical, structural, and microstructural analyses tools are combined in-situ and ex-situ.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • MPA 46th Seminar 16_9.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Oded SobolORCiD
Koautor*innen:Florian Konert, Jonathan Nietzke, Enrico Valverde Laks
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Gaseous hydrogen; Hydrogen Embrittlement; Hydrogen assisted cracking
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
Veranstaltung:MPA 46th Seminar: Additive Manufacturing, Hydrogen, Energy, Integrity
Veranstaltungsort:Leinfelden-Echterdingen, Germany
Beginndatum der Veranstaltung:12.10.2021
Enddatum der Veranstaltung:13.10.2021
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:25.10.2021
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.