• Treffer 1 von 4
Zurück zur Trefferliste

Following the formation of zeolites and MOFs in-situ

  • Porous materials are of a great interest due to their ability to interact with ions and molecules not only on their surface but throughout their bulk. Porous materials are conventionally used in applications; such as ion exchange, adsorption/separation and in catalysis, exploiting the huge internal surface area of highly ordered porous materials. [1, 2] The ability for these materials to succeed, in a particular field, is dependent greatly upon the uniformity of the shape and size of the pores within the material. However, despite how well we are able to understand the stability of 3-D frameworks in crystalline or polycrystalline zeolites and ZIFs, there still remains major limitations in fully understanding the synthetic mechanisms occurring prior to their formation. [3, 4] Though the syntheses of a wide variety of porous solids are already well established, their formation mechanisms continue to be of great interest to both academic and industrial communities, with the thought thatPorous materials are of a great interest due to their ability to interact with ions and molecules not only on their surface but throughout their bulk. Porous materials are conventionally used in applications; such as ion exchange, adsorption/separation and in catalysis, exploiting the huge internal surface area of highly ordered porous materials. [1, 2] The ability for these materials to succeed, in a particular field, is dependent greatly upon the uniformity of the shape and size of the pores within the material. However, despite how well we are able to understand the stability of 3-D frameworks in crystalline or polycrystalline zeolites and ZIFs, there still remains major limitations in fully understanding the synthetic mechanisms occurring prior to their formation. [3, 4] Though the syntheses of a wide variety of porous solids are already well established, their formation mechanisms continue to be of great interest to both academic and industrial communities, with the thought that with greater understanding of the formation of these solids can lead to their rational design. By obtaining a better knowledge of the underlying nucleation mechanisms, it can allow for increased predictability of new structures and in addition can reveal valuable information regarding the particle dimensions aiding in controlling particle morphology and size. Small-angle and wide-angle X-ray scattering (SAXS/WAXS) are ideal techniques for determining morphological changes in-situ, where the shape, size and crystallinity can be followed at a high temporal resolution, and when these techniques are deployed alongside complimentary techniques, such as ex-situ microscopy, a great deal of information on the formation of materials can be obtained. The above-mentioned methodologies were utilised to study the formation of Silicalite-1 from multiple silica sources to obtain a detailed picture of the formation as a whole, including the formation of intermediate species (Image 1 show the in-situ SAXS data collected from the formation of Silicalite-1 from tetraethyl orthosilicate). In-situ SAXS/WAXS studies were also utilized to observe the formation of ZIF-8 alongside in-situ X-ray absorption spectroscopy (XAS) experiments to probe both the morphological changes, as well as any changes occurring to the local structure during synthesis (Image 2 show the in-situ SAXS data collected from the formation of ZIF-8). These timeresolved in-situ studies have been utilised to follow changes in crystallinity and crystallite size, whilst also providing valuable information on the formation of intermediate species, the nucleation of crystalline ZIFs, and their subsequent growth. References: [1] M E Davis. Nature, 417(6891):813–21, 2002 [2] S T Meek, J A Greathouse, M D Allendorf, Advanced Materials, 23 (2): 249-267, 2011 [3] J Grand, H Awala, CrystEngComm,18 (5): 650–664, 2016 [4] M J V Vleet, T Weng, X Li, J R Schmidt. Chem.Rev.,118 (7): 3681–3721, 2018zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Feza_2021_GJS.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Glen Jacob SmalesORCiD
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.5 Synthese und Streuverfahren nanostrukturierter Materialien
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:In situ; MOFs; SAXS; Zeolites
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialdesign
Veranstaltung:8th Conference of the Federation of European Zeolite Associations (FEZA 2021)
Veranstaltungsort:Online meeting
Beginndatum der Veranstaltung:05.07.2021
Enddatum der Veranstaltung:09.07.2021
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:03.09.2021
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.