• Treffer 3 von 3
Zurück zur Trefferliste

Ultra-thin SiO2 on Si IX: absolute measurements of the amount of silicon oxide as a thickness of SiO2 on Si

  • Results from a study conducted between National Metrology Institutes (NMIs) for the measurements of the absolute thicknesses of ultra-thin layers of SiO2 on Si are reported. These results are from a key comparison and associated pilot study under the auspices of the Consultative Committee for Amount of Substance. ´Amount of substance´ may be expressed in many ways, and here the measurand is the thickness of the silicon oxide layers with nominal thicknesses in the range 1.5-8 nm on Si substrates, expressed as the thickness of SiO2. Separate samples were provided to each institute in containers that limited the carbonaceous contamination to approximately < 0.3 nm. The SiO2 samples were of ultra-thin on (100) and (111) orientated wafers of Si. The measurements from the laboratories which participated in the study were conducted using ellipsometry, neutron reflectivity, X-ray photoelectron spectroscopy or X-ray reflectivity, guided by the protocol developed in an earlier pilot study. AResults from a study conducted between National Metrology Institutes (NMIs) for the measurements of the absolute thicknesses of ultra-thin layers of SiO2 on Si are reported. These results are from a key comparison and associated pilot study under the auspices of the Consultative Committee for Amount of Substance. ´Amount of substance´ may be expressed in many ways, and here the measurand is the thickness of the silicon oxide layers with nominal thicknesses in the range 1.5-8 nm on Si substrates, expressed as the thickness of SiO2. Separate samples were provided to each institute in containers that limited the carbonaceous contamination to approximately < 0.3 nm. The SiO2 samples were of ultra-thin on (100) and (111) orientated wafers of Si. The measurements from the laboratories which participated in the study were conducted using ellipsometry, neutron reflectivity, X-ray photoelectron spectroscopy or X-ray reflectivity, guided by the protocol developed in an earlier pilot study. A very minor correction was made in the different samples that each laboratory received. Where appropriate, method offset values attributed to the effects of contaminations, from the earlier pilot study, were subtracted. Values for the key comparison reference values (agreed best values from a Consultative Committee study) and their associated uncertainties for these samples are then made from the weighted means and the expanded weighted standard deviations of the means of these data. These results show a dramatic improvement on previous comparisons, leading to 95% uncertainties in the range 0.09-0.27 nm, equivalent to 0.4-1.0 monolayers over the 1.5-8.0 nm nominal thickness range studied. If the sample-to-sample uncertainty is reduced from its maximum estimate to the most likely value, these uncertainties reduce to 0.05-0.25 nm or ~1.4% relative standard uncertainties. The best results achieve ~1% relative standard uncertainty. It is concluded that XPS has now been made fully traceable to the SI, for ultra-thin thermal SiO2 on Si layers, by calibration using wavelength methods in an approach that may be extended to other material systems.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:M.P. Seah, Wolfgang Unger, H. Wang, W. Jordaan, Thomas Gross, J.A. Dura, D.W. Moon, P. Totarong, M. Krumrey, R. Hauert, M. Zhiqiang
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Surface and interface analysis
Jahr der Erstveröffentlichung:2009
Verlag:Wiley
Verlagsort:Chichester
Jahrgang/Band:41
Ausgabe/Heft:5
Erste Seite:430
Letzte Seite:439
Freie Schlagwörter:Attenuation length; Calibration; Silicon dioxide; Thickness; Ultra-thin oxide
DOI:https://doi.org/10.1002/sia.3045
ISSN:0142-2421
ISSN:1096-9918
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:16.04.2009