Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 3 von 11
Zurück zur Trefferliste

Promising bio-based material solutions for more sustainable concrete

  • Today, concrete engineers can vary consistencies between very stiff and self-compacting. At the same time engineers can opt for a vast variety of binders. The possibility to use optimised mineral binders and to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young’s modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology and the interactions particles can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying additions, SCMs and admixtures will become key parameters in mastering the challenges of the next decades such as: - AdditiveToday, concrete engineers can vary consistencies between very stiff and self-compacting. At the same time engineers can opt for a vast variety of binders. The possibility to use optimised mineral binders and to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young’s modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology and the interactions particles can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying additions, SCMs and admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere the effective use of SCMs, additions and chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in many countries with challenging climatic conditions, it is difficult to use them, due to lacking local supply and supply infrastructure, and often the awareness of the value of local mineral resources is missing. However, the long distance transportation of mineral resources and chemicals is not very environmentally friendly and the economic consequences are dramatic. However, bio-based constituents and chemicals have been used in construction for ages effectively. Due to the enormous relevance of binders, fillers and rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of products that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in many countries in the world. However, alternatives are available, which can be found locally. In addition many agricultural wastes today are dumped, although they could be converted to reactive ashes easily. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for binders, fillers and rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Promising bio-based material solutions for more sustainable concrete.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Wolfram SchmidtORCiD
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Bio-based materials; Cement; Concrete; Polysaccharides; Supplementary cementitious materials; Sustainability
Veranstaltung:Peak Forum on Sustainable Civil Engineering Materials
Veranstaltungsort:Shanghai, China
Beginndatum der Veranstaltung:18.05.2017
Enddatum der Veranstaltung:18.05.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:17.07.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.