• Treffer 18 von 23
Zurück zur Trefferliste

Flame and fire retardancy of polymer composites used in aviation

  • The fire behaviour of carbon fibre (CF) reinforced polymers differs in comparison to polymers. Fibres behave often inert with respect to pyrolysis, they change the melt flow and dripping behaviour, the heat absorption and transfer, the amount and properties of the fire residue and so on. Flame and fire retardancy concepts are needed not only suitable for the different fire protection goals typical for each application, but also tailored for composites. This field is illuminated by examples taken from different projects carried out in the group of the author in the recent years. The examples target on different applications through achieving reduction in reaction to fire controlling the fire risks (flammability, heat release) in the beginning and development of a fire and investigating the fire stability, when a severe flame is directly applied (key property in fully developed fires). Approaches to halogen-free flame retardancy in CF reinforced thermosets are presented as well asThe fire behaviour of carbon fibre (CF) reinforced polymers differs in comparison to polymers. Fibres behave often inert with respect to pyrolysis, they change the melt flow and dripping behaviour, the heat absorption and transfer, the amount and properties of the fire residue and so on. Flame and fire retardancy concepts are needed not only suitable for the different fire protection goals typical for each application, but also tailored for composites. This field is illuminated by examples taken from different projects carried out in the group of the author in the recent years. The examples target on different applications through achieving reduction in reaction to fire controlling the fire risks (flammability, heat release) in the beginning and development of a fire and investigating the fire stability, when a severe flame is directly applied (key property in fully developed fires). Approaches to halogen-free flame retardancy in CF reinforced thermosets are presented as well as building up a bench and an intermediate scale testing of composites in fire applying mechanical load (up to 1 MN compression) and direct flame exposure (180 kW/m2) simultaneously. Indeed, e.g. we have investigated the fire stability of stringer reinforced shell components taken out from the fuselage of an aircraft. The understanding of fire behaviour, fire resistance, and fire retardant modes of action in composites is a promising basis for target-oriented development. The role of flame inhibition, charring, and protective layer formation is discussed. Successful concepts are presented for fire retardancy tailored for different application as well as general guidelines for future development. Different phosphorus flame retardants are proposed to achieve halogen-free flame retardancy with respect to ignition and developing fires. Different protective approaches are sketched for addressing the fire stability of composites that is the most important fire risk for the fire resistance in structural applications.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • EASN_Schartel.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Bernhard SchartelORCiD
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Carbon fibre reinforced composite; Composite in Fire; Epoxy resin; Fire stability; Flame retardant; Flammability; Intumescence; Pyrolysis; Sandwich panels; Stringer reinforced shells
Veranstaltung:7th EASN International Conference on Innovation in European Aeronautics Research
Veranstaltungsort:Warsaw, Poland
Beginndatum der Veranstaltung:26.09.2017
Enddatum der Veranstaltung:29.09.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:10.10.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.