Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 2 von 9
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-1373

A landmark-based method for the geometrical 3D calibration of scanning microscopes

  • This thesis presents a new strategy and a spatial method for the geometric calibration of 3D measurement devices at the micro-range, based on spatial reference structures with nanometer-sized landmarks (nanomarkers). The new method was successfully applied for the 3D calibration of scanning probe microscopes (SPM) and confocal laser scanning microscopes (CLSM). Moreover, the spatial method was also used for the photogrammetric self-calibration of scanning electron microscopes (SEM). In order to implement the calibration strategy to all scanning microscopes used, the landmark-based principle of reference points often applied at land survey or at close-range applications has been transferred to the nano- and micro-range in the form of nanomarker. In order to function as a support to the nanomarkers, slopeshaped step pyramids have been developed and fabricated by focused ion beam (FIB) induced metal deposition. These FIB produced 3D microstructures have been sized to embrace most of theThis thesis presents a new strategy and a spatial method for the geometric calibration of 3D measurement devices at the micro-range, based on spatial reference structures with nanometer-sized landmarks (nanomarkers). The new method was successfully applied for the 3D calibration of scanning probe microscopes (SPM) and confocal laser scanning microscopes (CLSM). Moreover, the spatial method was also used for the photogrammetric self-calibration of scanning electron microscopes (SEM). In order to implement the calibration strategy to all scanning microscopes used, the landmark-based principle of reference points often applied at land survey or at close-range applications has been transferred to the nano- and micro-range in the form of nanomarker. In order to function as a support to the nanomarkers, slopeshaped step pyramids have been developed and fabricated by focused ion beam (FIB) induced metal deposition. These FIB produced 3D microstructures have been sized to embrace most of the measurement volume of the scanning microscopes. Additionally, their special design allows the homogenous distribution of the nanomarkers. The nanomarkers were applied onto the support and the plateaus of the slope-step pyramids by FIB etching (milling) as landmarks with as little as several hundreds of nanometers in diameter. The nanomarkers are either of point-, or ring-shaped design. They are optimized so that they can be spatially measured by SPM and CLSM, and, imaged and photogrammetrically analyzed on the basis of SEM data. The centre of the each nanomarker serves as reference point in the measurement data or images. By applying image processing routines, the image (2D) or object (3D) coordinates of each nanomarker has been determined with subpixel accuracy. In contrast to the spatial reference structures applied for the spatial calibration method introduced here, present calibration methods for scanning microscopes use sequential measurements of 2D lattice and height step structures. This means that the determination of the scale factor for the height measurement yields an average value for the full scan area. Thus, the height scale factor remains independent of the lateral scanning position, and, therefore, it will be impossible to determine the coupling of the lateral coordinate axes and the z-axis as a shear factor with the sequential calibration method. On this account, an affine geometrical model has been used here, that allows for scale factors in all space directions, and, for coupling between all coordinate axes. With the help of the correlative analysis of the measurement data of all measurement methods applied (SPM, CLSM and photogrammetric SEM), for the first time, all scale factors, as well as the linear coupling of the probes used for the height measurement could be determined dependent on the lateral scanning position. It could be shown that the scanning movement of the SPM and the CLSM is erroneous. Due to hysteresis effects and guidance errors of the scanning generators, due to errors and peculiarities of the control cycle, and because of misaligned attachment of the probe with respect to the scanning plane, the measurement coordinate system is not identical to the ideal reference coordinate system. Scale and orthogonality of the measurement coordinate system have to be calibrated and corrected, in order to maintain the traceability to the SI-unit meter, and, therefore, to allow for quantitative dimensional 3D measurements. However, the correlative analysis of the SPM, CLSM and photogrammetric SEM measurement data after 3D calibration resulted in mean residues in the measured coordinates of as little as 13 nm. Without the coupling factors the mean residues are up to 6 times higher. By taking into account the orthogonality of the measurement coordinate axes when performing a 3D calibration, a comparative and quantitative analysis of 3D scanning microscopy has been made possible.zeige mehrzeige weniger
  • Die Arbeit stelle eine neue Strategie und ein daraus abgeleitetes Verfahren zur geometrischen Kalibrierung von 3D Messgeräten im Mikrobereich vor. Das Verfahren beruht auf der Anwendung von räumlichen Kalibrierstrukturen mit Nanomessmarken (Nanomarker). Es konnte erfolgreich für die 3D Kalibrierung von Rasterkraftmikroskopen (SPM) und konfokalen Lasermikroskopen (CLSM) eingesetzt werden. Im Rahmen von vergleichbaren Untersuchungen werden die 3D Kalibrierstrukturen ebenfalls für die photogrammetrische Selbstkalibrierung im Rasterelektronenmikroskop (SEM) verwendet.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Martin Ritter
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (21)
Sprache:Englisch
Jahr der Erstveröffentlichung:2007
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Herausgeber (Institution):Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Technische Universität Berlin, Fakultät VI – Planen Bauen Umwelt
Gutachter*innen:Olaf Hellwich, Jörg Albertz, Heinz Hohenberg
Datum der Abschlussprüfung:30.10.2006
Verlag:Wirtschaftsverlag NW
Verlagsort:Bremerhaven
Jahrgang/Band:21
Erste Seite:1
Letzte Seite:141
DDC-Klassifikation:Naturwissenschaften und Mathematik / Naturwissenschaften / Naturwissenschaften und Mathematik
Freie Schlagwörter:geometrical 3D calibration; landmark-based method; scanning microscopes
URN:urn:nbn:de:kobv:b43-1373
ISSN:1613-4249
ISBN:978-3-86509-630-2
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoAllgemeines Deutsches Urheberrecht
Datum der Freischaltung:23.01.2015
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.