• Treffer 7 von 8
Zurück zur Trefferliste

Unveiling the Electro-Chemo-Mechanical Failure Mechanism of Sodium Metal Anodes in Sodium–Oxygen Batteries by Synchrotron X-Ray Computed Tomography

  • Rechargeable sodium–oxygen batteries (NaOBs) are receiving extensive research interests because of their advantages such as ultrahigh energy density and cost efficiency. However, the severe failure of Na metal anodes has impeded the commercial development of NaOBs. Herein, combining in situ synchrotron X-ray computed tomography (SXCT) and other complementary characterizations, a novel electro-chemo-mechanical failure mechanism of sodium metal anode in NaOBs is elucidated. It is visually showcased that the Na metal anodes involve a three-stage decay evolution of a porous Na reactive interphase layer (NRIL): from the initially dot-shaped voids evolved into the spindle-shaped voids and the eventually-developed ruptured cracks. The initiation of this three-stage evolution begins with chemical-resting and is exacerbated by further electrochemical cycling. From corrosion science and fracture mechanics, theoretical simulations suggest that the evolution of porous NRIL is driven by theRechargeable sodium–oxygen batteries (NaOBs) are receiving extensive research interests because of their advantages such as ultrahigh energy density and cost efficiency. However, the severe failure of Na metal anodes has impeded the commercial development of NaOBs. Herein, combining in situ synchrotron X-ray computed tomography (SXCT) and other complementary characterizations, a novel electro-chemo-mechanical failure mechanism of sodium metal anode in NaOBs is elucidated. It is visually showcased that the Na metal anodes involve a three-stage decay evolution of a porous Na reactive interphase layer (NRIL): from the initially dot-shaped voids evolved into the spindle-shaped voids and the eventually-developed ruptured cracks. The initiation of this three-stage evolution begins with chemical-resting and is exacerbated by further electrochemical cycling. From corrosion science and fracture mechanics, theoretical simulations suggest that the evolution of porous NRIL is driven by the concentrated stress at crack tips. The findings illustrate the importance of preventing electro-chemo-mechanical degradation of Na anodes in practically rechargeable NaOBs.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2024_Zhang_Adv_Funct_Materials.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:X. Zhang, S. Zhang, J. Lu, F. Tang, K. Dong, Z. Yu, A. Hilger, M. Osenberg, Henning Markötter, F. Wilde, S. Zhang, J. Zhao, G. Xu, I. Manke, F. Sun, G. Cui
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Advanced Functional Materials
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Röntgenbildgebung
Verlag:Wiley VHC-Verlag
Aufsatznummer:2402253
Erste Seite:1
Letzte Seite:12
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:NaO-battery; Synchrotron radiation; X-ray imaging
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Elektrische Energiespeicher und -umwandlung
DOI:10.1002/adfm.202402253
ISSN:1616-301X
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:10.04.2024
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:10.09.2024
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.