Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 3 von 4
Zurück zur Trefferliste

Application of a modified GTN-model to predict large deformation failure of pressure vessels

  • The purpose of this research is to predict failure of a largely deformed pressure vessel. The employed Gurson-Tvergaard-Needleman (GTN) model enables a failure prediction through its in-built damage evolution law. A critical damage threshold defines the limit state of the evolution. Here, crack initiation is seen as the limit. Unfortunately, the GTN model does not capture void volume growth under shear stress and shows thermodynamic inconsistencies under pressure. To overcome these drawbacks and to make the model applicable to a wide range of complex stress states, a user-defined subroutine of the GTN model with an extension of its damage evolution law has been developed. The routine also accounts for large deformation which is advantageous for ductile vessel materials. The wall of a pressurised vessel is subjected to multi-axial stress states. Features, such as anges and valves, lead to even more complex stress states. The subroutine is used to determine the burst pressure and theThe purpose of this research is to predict failure of a largely deformed pressure vessel. The employed Gurson-Tvergaard-Needleman (GTN) model enables a failure prediction through its in-built damage evolution law. A critical damage threshold defines the limit state of the evolution. Here, crack initiation is seen as the limit. Unfortunately, the GTN model does not capture void volume growth under shear stress and shows thermodynamic inconsistencies under pressure. To overcome these drawbacks and to make the model applicable to a wide range of complex stress states, a user-defined subroutine of the GTN model with an extension of its damage evolution law has been developed. The routine also accounts for large deformation which is advantageous for ductile vessel materials. The wall of a pressurised vessel is subjected to multi-axial stress states. Features, such as anges and valves, lead to even more complex stress states. The subroutine is used to determine the burst pressure and the location of failure. This research compares the results of the conventional and the modified GTN model with results of experimentally conducted burst tests. The conclusion of this research is that there is a clear improvement in failure prediction by using the modified GTN model.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Vortrag_cfrac_2017-06-12.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Daniel Orrin-Seemann
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.2 Experimentelle und modellbasierte Werkstoffmechanik
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Axial stress; Failure; GTN model; Large deformation; Multi; Pressure vessel; Shear softening
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Degradation von Werkstoffen und Materialien
Veranstaltung:Fifth International Conference on Computational Modeling of Fracture and Failure of Materials and Structures
Veranstaltungsort:Nantes, France
Beginndatum der Veranstaltung:14.06.2017
Enddatum der Veranstaltung:16.06.2017
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:26.07.2017
Referierte Publikation:Nein