Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 8 von 18
Zurück zur Trefferliste

Corrosion of steel reinforcement in geopolymer mortars - carbonation resistance, chloride migration, and preliminary corrosion potential data

  • Alkali-activated materials such as geopolymers are currently receiving a lot of attention because of their potential to be used as binders for concrete with advantageous engineering properties and reduced manufacturing CO2 emissions. Knowledge of the durability of steel in these concretes and related properties of alkali-activated materials is a prerequisite for their application as building materials, if they are to be used for steel reinforced elements. However, to date only limited data exists on this topic. The present contribution focuses on durability-related transport properties of geopolymer-based mortars (as model systems for concrete). We report results of accelerated carbonation, rapid chloride migration (RCM) and air permeability measurements as well as porosity data for fly ash-based geopolymer mortars, including mixes containing ground granulated blast furnace slag (GGBFS). In addition, we report polarization resistance data and corrosion potential vs. time curves forAlkali-activated materials such as geopolymers are currently receiving a lot of attention because of their potential to be used as binders for concrete with advantageous engineering properties and reduced manufacturing CO2 emissions. Knowledge of the durability of steel in these concretes and related properties of alkali-activated materials is a prerequisite for their application as building materials, if they are to be used for steel reinforced elements. However, to date only limited data exists on this topic. The present contribution focuses on durability-related transport properties of geopolymer-based mortars (as model systems for concrete). We report results of accelerated carbonation, rapid chloride migration (RCM) and air permeability measurements as well as porosity data for fly ash-based geopolymer mortars, including mixes containing ground granulated blast furnace slag (GGBFS). In addition, we report polarization resistance data and corrosion potential vs. time curves for carbon steel bars embedded in two of the fly ash-based geopolymer mortars and a CEM I-based mortar (as reference). Despite comparable total porosities, the carbonation depths, the chloride migration coefficients and the air permeabilities of the mortars differed significantly. In general, the addition of GGBFS to the binders improved the performance (decreased transport coefficients); however, this was not found to be true for the air permeability in all cases. This latter effect can be explained by drying damage of the C-(A-)S-H gel in GGBFS-containing binders. On the other hand, low transport coefficients can also be achieved by optimization of the binder formulation without the addition of GGBFS, which is also reflected in the material’s air permeability. Thus, there exists no simple correlation between air permeability (of harshly dried mortars) and durability-related transport coefficients for the studied alkali-activated materials. The corrosion potential vs. time curves in combination with polarization resistance values reveal that the steel reinforcement in geopolymer mortars assumed a passive state. However, this happened considerably later than for steel in CEM I-based mortars. The free corrosion potential of carbon steel reinforcement in the geopolymer mortars had different values than the free corrosion potential values for the CEM I-based mortar for both the active and the passive state; possible reasons for this behavior are discussed.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 87351.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Petr Hlavacek, Gregor GluthORCiD, Steffi Reinemann, Gino EbellORCiD, Hans-Carsten KühneORCiD, Jürgen Mietz
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):EUROCORR 2017
Jahr der Erstveröffentlichung:2017
Erste Seite:Paper 87351, 1
Letzte Seite:7
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Alkali-activated materials; Concrete; Corrosion; Geopolymers; Steel reinforcement
Veranstaltung:EUROCORR 2017
Veranstaltungsort:Prague, Czech Republic
Beginndatum der Veranstaltung:03.09.2017
Enddatum der Veranstaltung:07.09.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:08.09.2017
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.