• Treffer 2 von 3
Zurück zur Trefferliste

Numerical investigations on cold cracking avoidance in fillet welds of high-strength steels

  • Industry faces a growing demand for high-strength structural steels with yield strengths of up to 1,300 MPa in order to cope with increasingly higher strength requirements in engineering. Higher strength levels are achieved by a special coordinated production process and an adapted chemical composition. Nevertheless, disastrous damage cases with high-strength steels have occurred in the past. The sensitivity to mechanical property degradation by hydrogen increases dramatically with strength. This phenomenon leads to hydrogen-assisted cold cracking. T-joints with fillet welds made from one side with an included angle of 60° were examined for their cold cracking behavior. Based on the T-joint, a modified heat input, even interpass temperature, plate thickness, and length ones were examined. The diffusion behavior and the effectiveness of different post-weld heat treatments in joints were simulated. The results of post-weld heat treatments are illustrated in practical hydrogen removalIndustry faces a growing demand for high-strength structural steels with yield strengths of up to 1,300 MPa in order to cope with increasingly higher strength requirements in engineering. Higher strength levels are achieved by a special coordinated production process and an adapted chemical composition. Nevertheless, disastrous damage cases with high-strength steels have occurred in the past. The sensitivity to mechanical property degradation by hydrogen increases dramatically with strength. This phenomenon leads to hydrogen-assisted cold cracking. T-joints with fillet welds made from one side with an included angle of 60° were examined for their cold cracking behavior. Based on the T-joint, a modified heat input, even interpass temperature, plate thickness, and length ones were examined. The diffusion behavior and the effectiveness of different post-weld heat treatments in joints were simulated. The results of post-weld heat treatments are illustrated in practical hydrogen removal heat treatment diagrams. It is noticed that the T-joint is subject to a very high risk of hydrogen-assisted cold cracking (HACC). Contrary to other joints, its most critical area for cracking is not the weld metal but the heat-affected zone surrounding area of the root pass. The simulation shows that HACC in the T-joint can only be avoided by applying a sufficient post-weld heat treatment.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Numerical investigations on cold cracking avoidance in fillet welds of high-strength steels.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Enrico Steppan, Tobias Mente, Thomas Böllinghaus
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Welding in the world
Jahr der Erstveröffentlichung:2013
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.4 Integrität von Schweißverbindungen
Herausgeber (Institution):International Institute of Welding
Verlag:Springer
Verlagsort:Oxford
Jahrgang/Band:57
Ausgabe/Heft:3
Erste Seite:359
Letzte Seite:371
Freie Schlagwörter:Fillet welds; High-strength structural steels; Hydrogen diffusion; Hydrogen removal heat treatment diagramm (HRHT); Hydrogen-assisted cold cracking (HACC); Numerical simulation; Post-weld heat treatment; T joints
DOI:https://doi.org/10.1007/s40194-013-0036-4
ISSN:0043-2288
ISSN:1878-6669
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:08.04.2013