• Treffer 3 von 0
Zurück zur Trefferliste

Investigation of transformation of triazole fungicides using model systems

  • In order to provide nutrition for a growing world population pesticides are a necessary tool. Crop protection agents may be considered safe, if handled correctly. Nevertheless, they are subject to transformation processes and metabolization in the environment and technical installations. Transformation products (TP) and metabolites may be more harmful than the mother substance and thereby pose a threat to environmental and human health. With 19 % market share in 2014, triazole pesticides are the class of organic fungicides which are most commonly used in Germany. However, only little data is available concerning their TP and metabolites. In this study the fate of the triazole fungicides propiconazole and difenoconazole in soil and water using model reaction systems mimicking their pathway in the environment and the industrial water treatment is investigated. During application the substances may directly contaminate soil as well as surface waters. In these compartments,In order to provide nutrition for a growing world population pesticides are a necessary tool. Crop protection agents may be considered safe, if handled correctly. Nevertheless, they are subject to transformation processes and metabolization in the environment and technical installations. Transformation products (TP) and metabolites may be more harmful than the mother substance and thereby pose a threat to environmental and human health. With 19 % market share in 2014, triazole pesticides are the class of organic fungicides which are most commonly used in Germany. However, only little data is available concerning their TP and metabolites. In this study the fate of the triazole fungicides propiconazole and difenoconazole in soil and water using model reaction systems mimicking their pathway in the environment and the industrial water treatment is investigated. During application the substances may directly contaminate soil as well as surface waters. In these compartments, transformation by global irradiation needs to be considered. Due to their moderate mobility both pesticides may also end up in ground water from which drinking water is produced. Owing to the vigorous conditions during drinking water production the formation of a variety of technical TP can be expected. Additionally, for all compartments the degradation by bacteria is a factor which needs to be taken into account. For this survey, the potential for metabolization by model organisms is investigated. In this work degradation and transformation of the fungicides is monitored using quantitative target analysis. Major components in the reaction mixtures are identified by non-target analysis. GC-EI-MS-spectra, HR-MS-measurements, or the comparison with native standards are utilised for structural elucidation. For identification, products will be isolated and characterized by NMR. Toxicity assessment of these TP is essential to define threshold values in the environment. The model reaction systems will be presented and possible TP will be shown.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ISEAC16_Muelow_160714.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Ulrike Mülow-Stollin
Koautor*innen:Christian Piechotta, U. Szewzyk
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Electrochemistry; Emerging pollutants; Fenton; Humic substances
Veranstaltung:ISEAC 39
Veranstaltungsort:Hamburg, Germany
Beginndatum der Veranstaltung:19.07.2016
Enddatum der Veranstaltung:22.07.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:01.08.2016
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.