• Treffer 42 von 110
Zurück zur Trefferliste

Mechanisms of degradation of concrete by external sufate ions under laboratory and field conditions

  • The durability of concrete is a major challenge for the construction, which devotes one third to one half of its annual investment to building maintenance. The lack of fieid data regarding concrete durability, especially in the case of exposure to Sulfate ions (“sulfate attack”) makes it dijficult to determine the appropriate fest methods andperformance criteria. Additionally, the increased use of sustainable blends (cement with mineral admixtures, typically slag from the iron industiy) suffers from a lack of experience regarding their long-term performance. Most results for sulfate resistance are derived from accelerated laboratoiy tests xvhere performance criteria are based only on macroscopic properties, especially expansion. To fill this gap and better widerstand the mechanisms of sulfate attack under real conditions, a parallel study of laboratoiy micro-concrete and fieid concrete samples under sulfate exposure was undertaken, focussing on microstructural changes in addition toThe durability of concrete is a major challenge for the construction, which devotes one third to one half of its annual investment to building maintenance. The lack of fieid data regarding concrete durability, especially in the case of exposure to Sulfate ions (“sulfate attack”) makes it dijficult to determine the appropriate fest methods andperformance criteria. Additionally, the increased use of sustainable blends (cement with mineral admixtures, typically slag from the iron industiy) suffers from a lack of experience regarding their long-term performance. Most results for sulfate resistance are derived from accelerated laboratoiy tests xvhere performance criteria are based only on macroscopic properties, especially expansion. To fill this gap and better widerstand the mechanisms of sulfate attack under real conditions, a parallel study of laboratoiy micro-concrete and fieid concrete samples under sulfate exposure was undertaken, focussing on microstructural changes in addition to the conventional macroscopic characterisation. Four exposure regimes were designed in the laboratoiy: full immersion (ponding), pH-control, semi-immersion and wet/diy cycles. Pure Portland blends and slag blends witli high level of slag replacement (70 wt.-%) were investigated. The exposure regime has been found to play a major role in the damage process. In ponding conditions, the damage process takes place in three stages characterised by a first period of induction, followed by surface damage thatfinally extends to the bulle of the material. Paradoxically, the w/c-ratio does not seem to have much impact on the ionic transport phenomena but might be more decisive in the microstructure mechanical strength against local stresses. The slag blends, considered as sulfate resistant in ponding exposure, revealed badperformances under wet/diy cycles. This beliaviour was attributed to poor proper physical resistance of the slag hydrates against diying. The fieid concretes selected for the comparison with the laboratoiy cases were partially buried in a sulfate-enriched soil in Argentina. A pure Portland blend and a slag blends with high level of slag replacement (80 wt.-%) were investigated. The submerged part of the samples could be compared to the laboratoiy ponding exposure, wliile the upper layer of the samples subjected to weathering could be compared to the laboratoiy wet/diy cycles exposure. The fieid obsen’ations tend to confirm the laboratoiy results and validate the fest settings. It has been underlined that a direct relationship between damage (e.g.; cracking/expansion) andphase assemblage was not evident. However, the study highlights that sulfate combination with the hydrates of the cement (e.g.; C-S-H) and with those of the slag would play a rote in the initiation of the expansion, which would be attributed to a swelling of the hydrates or to the precipitation offine ettringite after the Saturation level in sulfate of the hydrates has been reached.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Mechanisms of degradation of concrete by external sufate ions under laboratory and field conditions.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:A. Chabrelie, Urs Müller, K.L. Scrivener
Persönliche Herausgeber*innen:Á. Palomo, A. Zaragoza, J. C. L. Agüí
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):13th International congress on the chemistry of cement - XIII ICCC (Proceedings)
Jahr der Erstveröffentlichung:2011
Verlagsort:Madrid
Erste Seite:1
Letzte Seite:14
Freie Schlagwörter:Concrete; Exposure conditions; Field; Laboratory test; Microstructure; Phase assemblage; SCM; SEM; Slag; Sulfate attack; XRD
Veranstaltung:13th International congress on the chemistry of cement - XIII ICCC
Veranstaltungsort:Madrid, Spain
Beginndatum der Veranstaltung:03.07.2011
Enddatum der Veranstaltung:08.07.2011
ISBN:978-84-7292-400-0
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.