Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 10 von 208
Zurück zur Trefferliste

Direct X-ray refraction of micro structures

  • For the first time we present direct 2D imaging of refracted X-rays without any discrimination of the Primary radiation. X-refraction works in analogy to visible light optics: X-rays are entirely deflected at interfaces where discontinuities of (electron) density occur. This is demonstrated at the example of inner and outer surfaces of model samples of well-defined geometry (fibres, capillaries, and monodisperse micro particles). The samples are scanned through a 50 μm monochromatic (20 keV) pencil beam. In order to warrant a sufficient angular resolution a 2D detector (pixel size 7 μm) is placed 3 m downstream of the sample. Scanning the sample in micron steps allows for detecting local changes of interface / surface orientation directly in two dimensions. At the actual angular resolution of about 3 seconds of arc (scattering vector increments Δk = 10-3 nm-1) and 50 μm spatial resolution (scanning) the material’s inner surfaces (with nanometer separation) can be characterized even atFor the first time we present direct 2D imaging of refracted X-rays without any discrimination of the Primary radiation. X-refraction works in analogy to visible light optics: X-rays are entirely deflected at interfaces where discontinuities of (electron) density occur. This is demonstrated at the example of inner and outer surfaces of model samples of well-defined geometry (fibres, capillaries, and monodisperse micro particles). The samples are scanned through a 50 μm monochromatic (20 keV) pencil beam. In order to warrant a sufficient angular resolution a 2D detector (pixel size 7 μm) is placed 3 m downstream of the sample. Scanning the sample in micron steps allows for detecting local changes of interface / surface orientation directly in two dimensions. At the actual angular resolution of about 3 seconds of arc (scattering vector increments Δk = 10-3 nm-1) and 50 μm spatial resolution (scanning) the material’s inner surfaces (with nanometer separation) can be characterized even at sampling rates below 1 second per frame. Moreover, our technique is suited to directly determine particle diameters of up to 250 nm by means of diffraction fringes. Some potential applications to technical submicron structures are discussed.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 171_Kupsch_Rev2.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Andreas KupschORCiD, Manfred P. Hentschel, Axel Lange, Giovanni BrunoORCiD, Bernd R. MüllerORCiD
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):ECNDT 2014 - 11th European conference on non-destructive testing (Proceedings)
Jahr der Erstveröffentlichung:2014
Herausgeber (Institution):Brno University of Technology
Erste Seite:1
Letzte Seite:9
Freie Schlagwörter:Edge artefact; Huygens elementary waves; Phase contrast; Soft matter radiography; Wavelet transformation; X-ray refraction
Veranstaltung:ECNDT 2014 - 11th European conference on non-destructive testing
Veranstaltungsort:Prague, Czech Republic
Beginndatum der Veranstaltung:06.10.2014
Enddatum der Veranstaltung:10.10.2014
ISBN:978-80-214-5018-9
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:17.11.2014
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.