• Treffer 3 von 11
Zurück zur Trefferliste

Consequences of exposing cryogenic storage vessels containing liquid hydrogen to a fire load

  • Experiments have been performed to determine whether a storage vessel containing LH2 and caught in a fire engulfing the vessel can result in a BLEVE (Boiling Liquid Expanding Vapour Explosion) and if so its effects. The tests were performed at the Test Site Technical Safety of the Bundesanstalt für Materialforschung und –prüfung (BAM) in Horstwalde, Germany. Three tests were performed using double-walled vacuum insulated vessels of 1 m3 volume. The cylindrical Vessels differed in orientation (horizontal or vertical) and the insulation material used (perlite or multi-layer insulation (MLI)). The degree of filling of the vessels was approximately 35-40 % in each of the tests performed. The fire load was provided by a propane fed burner positioned under the storage vessel and designed to give a homogeneous fire load. The conditions in the vessel (temperatures and pressure) as well as external effects (heat radiation, blast waves, flame ball development and fragmentation) were measured.Experiments have been performed to determine whether a storage vessel containing LH2 and caught in a fire engulfing the vessel can result in a BLEVE (Boiling Liquid Expanding Vapour Explosion) and if so its effects. The tests were performed at the Test Site Technical Safety of the Bundesanstalt für Materialforschung und –prüfung (BAM) in Horstwalde, Germany. Three tests were performed using double-walled vacuum insulated vessels of 1 m3 volume. The cylindrical Vessels differed in orientation (horizontal or vertical) and the insulation material used (perlite or multi-layer insulation (MLI)). The degree of filling of the vessels was approximately 35-40 % in each of the tests performed. The fire load was provided by a propane fed burner positioned under the storage vessel and designed to give a homogeneous fire load. The conditions in the vessel (temperatures and pressure) as well as external effects (heat radiation, blast waves, flame ball development and fragmentation) were measured. All vessels were equipped with K-type thermocouples at several locations: inside the inner vessel in the gas phase and the liquid phase, on the inner and outer side of the inner vessel and on the inner and outer side of the outer vessel. The pressure inside the inner vessel (both in liquid, as a level indicator, and gaseous phase), and in the space between the inner and outer vessels (vacuum pressure) was measured. Bolometers were used to measure the heat radiation generated by both the propane fire and that generated by a possible fireball/BLEVE. To measure blast generated by the vessel burst/BLEVEs blast pencils were positioned at three locations in two directions. Weather conditions were monitored at two weather stations. Further several cameras were used to monitor the events: normal cameras, infrared (IR)-cameras, high-speed cameras also on board of a drone. Two of these vessels, a horizontal and a vertical vessel both insulated with perlite withstood the fire loading for 1 hour 20 minutes and 4 hours respectively without catastrophic failure. A horizontal vessel insulated with MLI failed by bursting after 1 hour and 6 minutes resulting in a fireball, fragments, and blast waves.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ISHPMIE2022_BLEVE_BAM_Kluge.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Martin Kluge
Koautor*innen:Abdel Karim Habib, K. van Wingerden
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:2 Prozess- und Anlagensicherheit
2 Prozess- und Anlagensicherheit / 2.1 Sicherheit von Energieträgern
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:BLEVE; Cryogenic Tank; LH2; Liquid Hydrogen
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
Veranstaltung:14th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions (ISHPMIE)
Veranstaltungsort:Braunschweig, Germany
Beginndatum der Veranstaltung:11.07.2022
Enddatum der Veranstaltung:15.07.2022
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:25.07.2022
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.