• Treffer 17 von 49
Zurück zur Trefferliste

Multi-length scale characterization of compression on metal foam flow-field based fuel cells using X-ray computed tomography and neutron radiography

  • The mechanical compression of metal foam flow-field based polymer electrolyte fuel cells (PEFCs) is critical in determining the interfacial contact resistance with gas diffusion layers (GDLs), reactant flow and water management. The distinct scale between the pore structure of metal foams and the entire flow-field warrant a multilength scale characterization that combines ex-situ tests of compressed metal foam samples and in-operando analysis of operating PEFCs using X-ray computed tomography (CT) and neutron radiography. An optimal ‘medium’ compression was found to deliver a peak power density of 853 mW/cm². The X-ray CT data indicates that the compression process significantly decreases the mean pore size and narrows the pore size distribution of metal foams. Simulation results suggest compressing metal foam increases the pressure drop and gas velocity, improving the convective liquid water removal. This is in agreement with the neutron imaging results that demonstrates an increaseThe mechanical compression of metal foam flow-field based polymer electrolyte fuel cells (PEFCs) is critical in determining the interfacial contact resistance with gas diffusion layers (GDLs), reactant flow and water management. The distinct scale between the pore structure of metal foams and the entire flow-field warrant a multilength scale characterization that combines ex-situ tests of compressed metal foam samples and in-operando analysis of operating PEFCs using X-ray computed tomography (CT) and neutron radiography. An optimal ‘medium’ compression was found to deliver a peak power density of 853 mW/cm². The X-ray CT data indicates that the compression process significantly decreases the mean pore size and narrows the pore size distribution of metal foams. Simulation results suggest compressing metal foam increases the pressure drop and gas velocity, improving the convective liquid water removal. This is in agreement with the neutron imaging results that demonstrates an increase in the mass of accumulated liquid water with minimum compression compared to the medium and maximum compression cases. The results show that a balance between Ohmic resistance, water removal capacity and parasitic power is imperative for the optimal performance of metal foam based PEFCs.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Wu_2021_metal_foam_flow_field.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Y. Wu, X. Lu, J.I.S. Cho, L. Rasha, M. Whiteley, T. P. Neville, R. Ziesche, N. Kardjilov, Henning MarkötterORCiD, I. Manke, X. Zhang, P. R. Shearing, D. J. L. Brett
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Energy Conversion and Management
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Röntgenbildgebung
Verlag:Elsevier Ltd.
Jahrgang/Band:239
Erste Seite:10
Letzte Seite:113785
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Compression effect; Fuel cell; Metal foam microstructure; Neutron radiography; X-ray CT
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
DOI:10.1016/j.enconman.2020.113785
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:29.11.2021
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:29.11.2021
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.