• Treffer 10 von 22
Zurück zur Trefferliste

Determination of radon exhalation from building materials in dynamically operated test chambers by use of commercially available measuring devices

  • The inhalation of radon (222Rn) decay products is the leading cause of lung cancer apart from tobacco smoking. Besides the permeation of radon from the subsoil through the basement as main source of radon in indoor air, also building materials have to be taken into consideration, especially at low air change rates in buildings. The Construction Products Regulation (EC, 2010) gives essential requirements for construction works regarding the release of dangerous substances such as toxic gases and radiation to which radon can be assigned. The recently adopted Basic Safety Standards Directive (EC, 2013), which has to be ratified by each European member state in between the next three years sets reference levels for indoor radon concentrations for the first time. In research project financed by the German Ministry for the Environment, Nature Conservation, Building and Nuclear Safety a practical, reliable and easily applicable test procedure for the determination of radon exhalation fromThe inhalation of radon (222Rn) decay products is the leading cause of lung cancer apart from tobacco smoking. Besides the permeation of radon from the subsoil through the basement as main source of radon in indoor air, also building materials have to be taken into consideration, especially at low air change rates in buildings. The Construction Products Regulation (EC, 2010) gives essential requirements for construction works regarding the release of dangerous substances such as toxic gases and radiation to which radon can be assigned. The recently adopted Basic Safety Standards Directive (EC, 2013), which has to be ratified by each European member state in between the next three years sets reference levels for indoor radon concentrations for the first time. In research project financed by the German Ministry for the Environment, Nature Conservation, Building and Nuclear Safety a practical, reliable and easily applicable test procedure for the determination of radon exhalation from building materials – based on ISO 16000-9 (ISO, 2006) and CEN/TS 16516 (CEN, 2013) – should be developed. In contrast to the static test procedure published by Richter et al. (2013), dynamically operated test chambers shall be foregrounded. First results of this study are presented, focused on the reliable measurement of radon background concentration and the selection of suitable radon test devices, representing the basic elements of the subsequent work.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Determination of radon exhalation from building materials in dynamically operated test chambers by use of commercially available measuring devices.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Michael Hofmann, Matthias RichterORCiD, Oliver Jann
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Healthy Buildings Europe 2015
Jahr der Erstveröffentlichung:2015
Erste Seite:Paper 552, 1
Letzte Seite:3
Freie Schlagwörter:Building material; Radon exhalation; Radon measurement; VOC emission test chamber
Veranstaltung:Healthy Buildings Europe 2015
Veranstaltungsort:Eindhoven, The Netherlands
Beginndatum der Veranstaltung:18.05.2015
Enddatum der Veranstaltung:20.05.2015
ISBN:978-90-386-3889-8
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.