Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 23 von 95
Zurück zur Trefferliste

Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines

  • Mechanical properties such as ultimate tensile strength, yield strength, and tensile elongation of parts manufactured with Laser Powder Bed Fusion (L-PBF) can differ significantly after the building process limiting the advantage of production flexibility of that technology. At this background, the present work investigated the influence of post process heat treatments (HT) on microstructure, hardness, and tensile properties of AlSi10Mg specimens in different As-built (AB) conditions. For this purpose, two superordinate aspects were covered within this study. Firstly, various HTs were performed on specimens built-up with the same L-PBF machine applying the same parameter set-up. Results of tensile tests and hardness measurements were discussed considering the microstructural changes examined with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy as well as X-ray diffraction, and gathered in a material data map. Based on the observed microstructural changes and aMechanical properties such as ultimate tensile strength, yield strength, and tensile elongation of parts manufactured with Laser Powder Bed Fusion (L-PBF) can differ significantly after the building process limiting the advantage of production flexibility of that technology. At this background, the present work investigated the influence of post process heat treatments (HT) on microstructure, hardness, and tensile properties of AlSi10Mg specimens in different As-built (AB) conditions. For this purpose, two superordinate aspects were covered within this study. Firstly, various HTs were performed on specimens built-up with the same L-PBF machine applying the same parameter set-up. Results of tensile tests and hardness measurements were discussed considering the microstructural changes examined with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy as well as X-ray diffraction, and gathered in a material data map. Based on the observed microstructural changes and a calculated quality index which comprises strength and ductility properties, three HTs were selected for the second part of this work. Therein, the effect of these HTs on specimens fabricated with overall three L-PBF machines working with different raw materials, process parameters, and build-up strategies was studied. Specimens characterization included porosity measurements, the evaluation of material defects, microstructure analysis via SEM, hardness measurements, and tensile tests. It was found that strength properties in the AB condition revealed appreciable deviations: Values of yield strength and ultimate tensile strength were from 228 to 292 MPa and from 346 to 484 MPa, respectively. Whereas heat treated specimens at 300 °C for 0.5 as well as 2 h only exhibited slight differences in strength, a complete homogenization of strength properties was obtained after conducting a T6 HT. Nevertheless, ductility was not homogenized after heat treating caused by the presence of material defects such as keyhole pores and lack of fusion defects. It was shown that even slight differences in porosity determined in cross-sections can significantly affect ductility properties.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Kempf et al_LPBF_AlSi10Mg_Heat treatments.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:A. Kempf, Kai HilgenbergORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Materials Science & Engineering A
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.6 Additive Fertigung metallischer Komponenten
Verlag:Elsevier B.V.
Verlagsort:Berlin
Jahrgang/Band:818
Erste Seite:141371
Freie Schlagwörter:Laser powder bed fusion
Themenfelder/Aktivitätsfelder der BAM:Material
DOI:10.1016/j.msea.2021.141371
ISSN:0921-5093
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:03.06.2021
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:24.06.2021
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.