• Treffer 6 von 6
Zurück zur Trefferliste

Experimental monitoring of chloride-induced reinforcement corrosion and chloride contamination in concrete with ground-penetrating radar

  • In this article, we present a laboratory experiment to monitor the accelerated corrosion in concrete using ground-penetrating radar (GPR). Four concrete test specimens were cast with rebars of different size and placed at different depths. The lifetime decades of reinforcement corrosion process were accelerated into 18 days by using the impress current technique. The electrochemical corrosion process was periodically monitored with GPR. Two control specimens were also prepared to investigate the influence of chloride contamination on GPR signal. The measured data were analysed both in time and frequency domains. In time domain, the peak-to-peak amplitude of a wave reflected by a rebar was calculated to investigate the relationship between an increase in signal amplitude and the degree of corrosion. In frequency domain, the time–frequency representations of the signal were computed by using S-transform. The results show that reinforce corrosion increased the amplitude of reflectedIn this article, we present a laboratory experiment to monitor the accelerated corrosion in concrete using ground-penetrating radar (GPR). Four concrete test specimens were cast with rebars of different size and placed at different depths. The lifetime decades of reinforcement corrosion process were accelerated into 18 days by using the impress current technique. The electrochemical corrosion process was periodically monitored with GPR. Two control specimens were also prepared to investigate the influence of chloride contamination on GPR signal. The measured data were analysed both in time and frequency domains. In time domain, the peak-to-peak amplitude of a wave reflected by a rebar was calculated to investigate the relationship between an increase in signal amplitude and the degree of corrosion. In frequency domain, the time–frequency representations of the signal were computed by using S-transform. The results show that reinforce corrosion increased the amplitude of reflected signal in time domain but did not change the peak frequency in frequency domain while chloride contamination attenuates the signal to smaller amplitude and lower peak frequency. Based on the results, a novel process is finally proposed for GPR-based corrosion detection.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Experimental monitoring of chloride induced reinforcement corrosion and chloride contamination in concrete with ground penetrating radar.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Shuxian Hong, W.-L. Lai, Rosemarie Helmerich
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Structure and infrastructure engineering
Jahr der Erstveröffentlichung:2015
Verlag:Taylor & Francis
Verlagsort:London [u.a.]
Jahrgang/Band:11
Ausgabe/Heft:1
Erste Seite:15
Letzte Seite:26
Freie Schlagwörter:Chloride; GPR; Moisture; Non-destructive; Reinforcement corrosion; S-transform
DOI:10.1080/15732479.2013.879321
ISSN:1573-2479
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:23.04.2015
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.