• Treffer 3 von 6
Zurück zur Trefferliste

Application of localized electrochemical methods to the analysis of microbiologically influenced corrosion

  • The corrosion of stainless steel components is a problem of global scale, economically as well as in regards to the safety of industrial equipment and facilities. With microorganisms involved (microbial influenced corrosion, MIC), the problem becomes more complex. Iron reducing bacteria (IRB) for example accelerate the corrosion of iron based materials like stainless steel via the reduction of iron oxides in the passive layer. When co-cultivated with iron oxidizing bacteria, IRBs can induce deep, heterogeneously distributed pits on stainless steel surfaces. The analysis of localized corrosion – or pitting corrosion – is of great relevance since it can lead to unpredictable material failure. In general, macroscopic electrochemical methods are not capable of providing information about the spatial heterogeneity of a sample and thus need to be complemented by multi-electrode based techniques or scanning electrochemical methods. The aim of this work is to develop methods for the analysisThe corrosion of stainless steel components is a problem of global scale, economically as well as in regards to the safety of industrial equipment and facilities. With microorganisms involved (microbial influenced corrosion, MIC), the problem becomes more complex. Iron reducing bacteria (IRB) for example accelerate the corrosion of iron based materials like stainless steel via the reduction of iron oxides in the passive layer. When co-cultivated with iron oxidizing bacteria, IRBs can induce deep, heterogeneously distributed pits on stainless steel surfaces. The analysis of localized corrosion – or pitting corrosion – is of great relevance since it can lead to unpredictable material failure. In general, macroscopic electrochemical methods are not capable of providing information about the spatial heterogeneity of a sample and thus need to be complemented by multi-electrode based techniques or scanning electrochemical methods. The aim of this work is to develop methods for the analysis of localized corrosion, on stainless steel surfaces induced by IRB biofilms. The greatest challenge is to address the complexity of two heterogeneous systems at the metal/biofilm interface. First there is the variation in the passive layer composition and microstructure. Secondly, the microbial biofilm with its heterogeneous tree-dimensional structure resulting in local differential aeration cells and electrochemical parameters. To be able to differentiate between individual effects, artificial biofilms mimicking the physical properties of a natural biofilm are used in this study as model systems. This artificial biofilm is applied on a multi-electrode probe to identify local anodic sites during exposure experiments. The detailed analysis of active sites by means of scanning electrochemical microscopy (SECM) allows the investigation of local properties within the biofilm and its immediate vicinity. The presented analytical approach delivers promising results in clarifying how localized corrosion of stainless steels develops chronologically and spatially in the presence of IRBs. Furthermore, our results on model systems provide the basis for the application of the methodology for the investigation of natural or multi-species biofilms in the future.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2016-09-27_mhmp_talk_electrochemistry2016_final.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Marco Hampel
Koautor*innen:Özlem Özcan Sandikcioglu
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:MIC; Microbiologically influenced corrosion; Multielectrode assemblies; Scanning electrochemical microscope
Veranstaltung:Electrochemistry 2016
Veranstaltungsort:Goslar, Germany
Beginndatum der Veranstaltung:26.09.2016
Enddatum der Veranstaltung:28.09.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:11.11.2016
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.