Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 4 von 8
Zurück zur Trefferliste

Measurement and Simulation of the Microscopic Energy Deposit: A general approach applicable to Ionizing Radiation Sources of varying Linear Energy Transfer

  • The determination of microscopic dose-damage relations in aqueous environment is of fundamental interest for dosimetry and its application in radiation-therapy and protection. We present a combined experimental and simulational approach to quantify the microscopic energy deposit at biomolecules in liquid environment which is applicable to a wide range of primary radiation sources, e.g. photons, electrons or ions, and targets, such as DNA, proteins or cells.Therefore, we combine Geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We present, how to combine these simulational results and experimental data via a generalised damage model to determine the microscopic dose-damage relation at a molecular level. To show the viability of this approach, we apply this method to an experimentally challenging system, the direct irradiation of plasmid DNA (pUC19) inThe determination of microscopic dose-damage relations in aqueous environment is of fundamental interest for dosimetry and its application in radiation-therapy and protection. We present a combined experimental and simulational approach to quantify the microscopic energy deposit at biomolecules in liquid environment which is applicable to a wide range of primary radiation sources, e.g. photons, electrons or ions, and targets, such as DNA, proteins or cells.Therefore, we combine Geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We present, how to combine these simulational results and experimental data via a generalised damage model to determine the microscopic dose-damage relation at a molecular level. To show the viability of this approach, we apply this method to an experimentally challenging system, the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here we combine electron-scattering simulations with calculations concerning the diffusion and convection induced movement of the DNA, within a coarse-grained model of the irradiated liquid. Additionally a microscopic target model for DNA molecules based on the relation of lineal energy and radiation quality is used to calculate their effective target volume. It was found that on average fewer than two ionisations within a 7.5\,nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E\textsubscript{1/2}=6+-4\,eV. The presented method is applicable for all types of ionising radiation and a broad variety of biological targets.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Workshop-CCQM2019-EP1.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Marc Benjamin Hahn
Koautoren/innen:Tihomir Solomun, Heinz Sturm
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:6 Materialschutz und Oberflächentechnik
6 Materialschutz und Oberflächentechnik / 6.6 Nano-Tribologie und Nanostrukturierung von Oberflächen
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:DNA; Dosimetry; Electron irradiation; Geant4; Geant4-DNA; Microdosimetry; Monte-Carlo Simulation
Themenfelder/Aktivitätsfelder der BAM:Analytical Sciences
Analytical Sciences / Zerstörungsfreie Prüfung und Spektroskopie
Veranstaltung:CCQM Workshop
Veranstaltungsort:Paris, France
Beginndatum der Veranstaltung:09.04.2019
Enddatum der Veranstaltung:10.04.2019
URL:https://www.bipm.org/utils/en/pdf/Workshop-CCQM2019-EP1.pdf
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:17.04.2019
Referierte Publikation:Nein