• Treffer 5 von 6
Zurück zur Trefferliste

Micromechanical response of multi-phase Al-alloy matrix composites under uniaxial compression

  • Aluminum alloys are extensively used in the automotive industry. Particularly, squeeze casting production of Al-Si alloys is employed in the conception of metal matrix composites (MMC) for combustion engines. Such materials are of a high interest since they allow combining improved mechanical properties and reduced weight and hence improve efficiency. Being a multiphase material, most MMCs show complex micromechanical behavior under different load conditions. In this work we investigated the micromechanical behavior of two MMCs, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles. Both MMCs have complex 3D microstructure consisting of four and five phases: Al-alloy matrix, eutectic Si, intermetallics, Al2O3 fibers and SiC particles. The in-situ neutron diffraction compression experiments were carried out on the Stress-Spec beamline and disclosed the evolution ofAluminum alloys are extensively used in the automotive industry. Particularly, squeeze casting production of Al-Si alloys is employed in the conception of metal matrix composites (MMC) for combustion engines. Such materials are of a high interest since they allow combining improved mechanical properties and reduced weight and hence improve efficiency. Being a multiphase material, most MMCs show complex micromechanical behavior under different load conditions. In this work we investigated the micromechanical behavior of two MMCs, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles. Both MMCs have complex 3D microstructure consisting of four and five phases: Al-alloy matrix, eutectic Si, intermetallics, Al2O3 fibers and SiC particles. The in-situ neutron diffraction compression experiments were carried out on the Stress-Spec beamline and disclosed the evolution of internal phase-specific stresses in both composites. In combination with the damage mechanism revealed by synchrotron X-ray computed tomography (SXCT) on plastically pre-strained samples, this allowed understanding the role of every composite’s phase in the stress partitioning mechanism. Finally, based on the Maxwell scheme, a micromechanical model was utilized. The model perfectly rationalizes the experimental data and predicts the evolution of principal stresses in each phase.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • MLZ_User_Meeting_2020_Evsevleev_final.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Sergei EvsevleevORCiD
Koautor*innen:Tatiana Mishurova, G. Garces, I. Sevostianov, M. Hofmann, Giovanni Bruno
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2020
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Röntgenbildgebung
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Computed tomography; Damage mechanism; Load transfer; Metal matrix composite; Neutron diffraction
Themenfelder/Aktivitätsfelder der BAM:Material
Veranstaltung:MLZ User Meeting 2020
Veranstaltungsort:Online meeting
Beginndatum der Veranstaltung:09.12.2020
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:25.01.2021
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.