• Treffer 9 von 11
Zurück zur Trefferliste

Stress partitioning and damage evolution in near-eutectic cast AlSi12CuMgNi alloy

  • Near eutectic cast Al–Si alloys are the basis of all Al-alloys used for pistons due to their high fluidity and relatively high strength-to-weight ratio. Their microstructure is characterized by the presence of eutectic-Si embedded in an age hardenable -Al matrix. During solution heat treatment, the eutectic Si network undergoes a process of gradual disintegration, reducing the load bearing capability and the strength of the alloy. The improvement of the high temperature strength is achieved by addition of transition elements such as Cu, Mg or Ni through the formation of stiff intermetallic (IM) phases. In present study a near-eutectic AlSi12CuMgNi alloy produced by squeeze casting was investigated in as-cast condition. The in-situ neutron diffraction compression tests revealed the stress partitioning mechanism between phases of the alloy. Large stresses were found in IMs, showing their significant role as a reinforcement elements. After the failure of IM and Si phases the load isNear eutectic cast Al–Si alloys are the basis of all Al-alloys used for pistons due to their high fluidity and relatively high strength-to-weight ratio. Their microstructure is characterized by the presence of eutectic-Si embedded in an age hardenable -Al matrix. During solution heat treatment, the eutectic Si network undergoes a process of gradual disintegration, reducing the load bearing capability and the strength of the alloy. The improvement of the high temperature strength is achieved by addition of transition elements such as Cu, Mg or Ni through the formation of stiff intermetallic (IM) phases. In present study a near-eutectic AlSi12CuMgNi alloy produced by squeeze casting was investigated in as-cast condition. The in-situ neutron diffraction compression tests revealed the stress partitioning mechanism between phases of the alloy. Large stresses were found in IMs, showing their significant role as a reinforcement elements. After the failure of IM and Si phases the load is transferred back to the Al matrix, inducing further plastic deformation in it, yet without creating microcracking. The neutron diffraction experiments were coupled with assessment of internal damage after ex-situ compression tests by synchrotron radiation computed tomography. The quantitative analysis of CT data revealed that local tensile stresses in IM and Si phases induce microcracks with preferential orientation, parallel to the axis of applied load. Altogether, present experimental data was used as an input for the developed micromechanical model based on Maxwell homogenization scheme. In contrast to the neutron diffraction experiment, which can only determine stress differences between the axial and radial sample directions, the model allows predicting the principal stresses in each phase of the alloy.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Evsevleev_ECRS10.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Sergei Evsevleev
Koautoren/innen:Tatiana Mishurova, Sandra Cabeza, Gerardo Garcés, Guillermo Requena, Igor Sevostianov, Giovanni Bruno
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Mikro-ZfP
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Aluminum alloy; Computed tomography; Intermetallics; Load partition; Neutron diffraction; Stress analysis
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialien und Stoffe
Veranstaltung:European Conference on Residual Stresses - ECRS10
Veranstaltungsort:Leuven, Belgium
Beginndatum der Veranstaltung:11.09.2018
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:26.09.2018
Referierte Publikation:Nein