• Treffer 7 von 21
Zurück zur Trefferliste

Characterization of thermo-oxidative stability of polymer optical fibers using chemiluminescence technique

  • The thermo-oxidative stability of commercially available polymer optical fibers (POFs) and their components (cores and claddings) was investigated. All the bare POFs (core and cladding only) studied here were based on poly(methyl methacrylate) (PMMA) core. The fibers were exposed to 100 °C/low humidity for about 4200 h. Chemiluminescence (CL) technique was applied to investigate the thermo-oxidative stability and for measuring the transmission loss during exposure a prototype device called multiplexer was used. POFs exhibited variation in thermo-oxidative stability although they possessed identical core material PMMA. This was due to difference in the chemical compositions of claddings. Claddings were more susceptible to the thermo-oxidative degradation compared to cores. The thermo-oxidative degradation of both the cladding and the core was found in POFs as a result of climatic exposure. POFs showed an early drop-off followed by a slow decline of transmission. The early drop-off ofThe thermo-oxidative stability of commercially available polymer optical fibers (POFs) and their components (cores and claddings) was investigated. All the bare POFs (core and cladding only) studied here were based on poly(methyl methacrylate) (PMMA) core. The fibers were exposed to 100 °C/low humidity for about 4200 h. Chemiluminescence (CL) technique was applied to investigate the thermo-oxidative stability and for measuring the transmission loss during exposure a prototype device called multiplexer was used. POFs exhibited variation in thermo-oxidative stability although they possessed identical core material PMMA. This was due to difference in the chemical compositions of claddings. Claddings were more susceptible to the thermo-oxidative degradation compared to cores. The thermo-oxidative degradation of both the cladding and the core was found in POFs as a result of climatic exposure. POFs showed an early drop-off followed by a slow decline of transmission. The early drop-off of transmission was attributed to physical changes like thermal expansion and the slow decline of transmission to chemical changes like oxidative degradation of POFs. A good linear relationship between optical transmission stability and thermo-oxidative stability of POFs was established from these studies.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Anilkumar Appajaiah, Volker WachtendorfORCiD, Werner Daum
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Polymer degradation and stability
Jahr der Erstveröffentlichung:2006
Verlag:Applied Science Publ.
Verlagsort:London
Jahrgang/Band:91
Ausgabe/Heft:11
Erste Seite:2605
Letzte Seite:2613
Freie Schlagwörter:Aging; Chemiluminescence (CL); Optical transmission stability; Polymer optical fibers (POFs); Thermo-oxidative stability
DOI:10.1016/j.polymdegradstab.2006.05.006
ISSN:0141-3910
ISSN:1873-2321
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:27.11.2006
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.