• Treffer 3 von 11
Zurück zur Trefferliste

Impact of laser treatment on phosphoric acid coated multicrystalline silicon PV-wafers

  • The selective emitter is a well-known technology for producing highly doped areas under the metallization grid to improve the solar cell performance. In this work, the influence of laser irradiation on phosphoric acid coated multicrystalline silicon PV-wafers on the wafer surface structure, the phosphorous depth distribution and the electrical contact resistance within the laser treated area as well as the electrical series resistance of laserprocessed solar cells was evaluated. Different laser processing settings were tested including pulsed and continuous wave (cw) laser sources (515 nm, 532 nm, 1064 nm wavelength). Complementary numerical simulations using the finite element method (FEM) were conducted to explain the impact of the laser parameters on the melting behavior (melt duration and geometry). It was found that the melt duration is a key parameter for a successful laser Doping process. Our simulations at a laser wavelengths of 515 nm reveal that low-repetition rate (<500 kHz)The selective emitter is a well-known technology for producing highly doped areas under the metallization grid to improve the solar cell performance. In this work, the influence of laser irradiation on phosphoric acid coated multicrystalline silicon PV-wafers on the wafer surface structure, the phosphorous depth distribution and the electrical contact resistance within the laser treated area as well as the electrical series resistance of laserprocessed solar cells was evaluated. Different laser processing settings were tested including pulsed and continuous wave (cw) laser sources (515 nm, 532 nm, 1064 nm wavelength). Complementary numerical simulations using the finite element method (FEM) were conducted to explain the impact of the laser parameters on the melting behavior (melt duration and geometry). It was found that the melt duration is a key parameter for a successful laser Doping process. Our simulations at a laser wavelengths of 515 nm reveal that low-repetition rate (<500 kHz) laser pulses of 300 ns duration generate a melt duration of ~0.35 µs, whereas upon scanning cw-laser radiation at 532 nm prolongates the melt duration by at least one order of magnitude. Experimentally, the widely used ns-laser pulses did not lead to satisfying laser irradiation results. In contrast, cw-laser radiation and scan velocities of less than 2 m/s led to suitable laser doping featuring low electrical resistances in the laser treated areas.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Impact of laser treatment on phosphoric acid coated multicrystalline silicon PV-wafers.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:M. Geier, M. Eberstein, H. Grießmann, U. Partsch, L. Völkel, R. Böhme, Guido Mann, Jörn Bonse, Jörg Krüger
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):26th European photovoltaic solar energy conference and exhibition (Proceedings)
Jahr der Erstveröffentlichung:2011
Erste Seite:1243
Letzte Seite:1247
Freie Schlagwörter:Doping; Laser processing; Selective emitter; Silicon solar cell; Simulation
Veranstaltung:26th European photovoltaic solar energy conference and exhibition
Veranstaltungsort:Hamburg, Germany
Beginndatum der Veranstaltung:05.09.2011
Enddatum der Veranstaltung:08.09.2011
DOI:https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.7
ISBN:3-936338-27-2
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.02.2016
Referierte Publikation:Nein