Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 2 von 2
Zurück zur Trefferliste

Chemical and electrochemical interaction mechanisms of metal-reducing bacteria with gold surfaces

  • Bacterial biofilms are considered one of the salient contributing factors to the deterioration of metals and their alloys, occurring in virtually all environments and across various industrial systems. Considering the sheer magnitude of detrimental effects, it is of pertinent interest to elucidate the interaction mechanisms of sessile bacteria with metal and metal oxide surfaces to facilitate the development of efficient antifouling strategies. A common constituent of microbial communities within aquatic and sedimentary settings, the Shewanella genus consists of facultatively aerobic, Gram-negative bacterium which exhibit exceptional plasticity in respiratory capacities. During aerobic conditions, Shewanella utilizes oxygen as a terminal electron acceptor; conversely, under anaerobic conditions, it is able to undertake respiration by reducing alternative terminal electron acceptors such as oxidized metals via extracellular electron transfer mechanisms not yet thoroughly discerned. TheBacterial biofilms are considered one of the salient contributing factors to the deterioration of metals and their alloys, occurring in virtually all environments and across various industrial systems. Considering the sheer magnitude of detrimental effects, it is of pertinent interest to elucidate the interaction mechanisms of sessile bacteria with metal and metal oxide surfaces to facilitate the development of efficient antifouling strategies. A common constituent of microbial communities within aquatic and sedimentary settings, the Shewanella genus consists of facultatively aerobic, Gram-negative bacterium which exhibit exceptional plasticity in respiratory capacities. During aerobic conditions, Shewanella utilizes oxygen as a terminal electron acceptor; conversely, under anaerobic conditions, it is able to undertake respiration by reducing alternative terminal electron acceptors such as oxidized metals via extracellular electron transfer mechanisms not yet thoroughly discerned. The aim of this work is to explicate the mechanisms governing the initial bacterial adhesion and subsequent biofilm formation on metallic surfaces. To investigate this dynamic interplay, a combined approach has been followed which couples surface enhanced Raman spectroscopy (SERS) with electrochemical techniques using Shewanella sp. model biofilms. Gold nano-islands deposited on thin glass slides have been chosen as inert model substrates with good uniformity and high surface enhancement factor. Furthermore, the utilization of gold as substrate material not only allowed the differentiation of the sole effect of substrate polarization on bacterial attachment but also enabled a precise adjustment of the surface chemistry and surface energy by means of surface functionalization with organothiol self-assembled monolayers. The results present the correlation of the primary settlement rate of bacteria on metallic substrates with the environmental parameters such as electrolyte composition and pH as well as surface-related properties like hydrophobicity/hydrophilicity and polarization. With the overall strategic goal of transferring this methodology to technical systems the results provide the fundamental basis for the bottom-up design of anti-fouling surfaces.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • EKastania_EChem2016_Goslar.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Özlem Özcan
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:6 Materialschutz und Oberflächentechnik
6 Materialschutz und Oberflächentechnik / 6.2 Grenzflächenprozesse und Korrosion
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Anti-fouling; Bacterial biofilms; Biocorrosion; Electrochemistry; Microbiologically induced corrosion; Microbiology; Raman spectroscopy; Shewanella; Surface enhanced Raman spectroscopy
Themenfelder/Aktivitätsfelder der BAM:Analytical Sciences
Analytical Sciences / Oberflächen- und Grenzflächenanalytik
Veranstaltung:Electrochemistry 2016
Veranstaltungsort:Göslar, Germany
Beginndatum der Veranstaltung:26.09.2016
Enddatum der Veranstaltung:28.09.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:24.01.2019
Referierte Publikation:Nein