• Treffer 79 von 2247
Zurück zur Trefferliste

Failure criterion based on adhesion for composites under transverse loading

  • The failure of laminates usually is initiated by the failure of the plies with the maximum transverse stresses. The failure of those plies generally reduces the load carrying capability of the laminate, even though they carry only a small part of the external load. The analysis of failure under off-axis stresses accordingly is essential for the prediction of the strength of laminates. This is taken into account in the "mechanisms based failure criteria" e.g. by Puck. Most of these inter fiber failure criteria are not based on the micromechanics of the failure process but on prescribed stress interaction functions. The failure of plies under transverse loading obviously is governed by the bond strength between fiber and matrix fiber. The interfacial debonding was studied e.g. by Paris et al. and Corea et al.. The bond strength between fiber and matrix usually is measured by using micromechanical tests e.g. pull-out, push-out or fragmentation tests. Stress analyses as well as fractureThe failure of laminates usually is initiated by the failure of the plies with the maximum transverse stresses. The failure of those plies generally reduces the load carrying capability of the laminate, even though they carry only a small part of the external load. The analysis of failure under off-axis stresses accordingly is essential for the prediction of the strength of laminates. This is taken into account in the "mechanisms based failure criteria" e.g. by Puck. Most of these inter fiber failure criteria are not based on the micromechanics of the failure process but on prescribed stress interaction functions. The failure of plies under transverse loading obviously is governed by the bond strength between fiber and matrix fiber. The interfacial debonding was studied e.g. by Paris et al. and Corea et al.. The bond strength between fiber and matrix usually is measured by using micromechanical tests e.g. pull-out, push-out or fragmentation tests. Stress analyses as well as fracture mechanical analyses show that the interfacial failure over a large range is dominated by shear stresses (Kim and Mai, Pisanova et al, Marotzke and Qiao). The stress distribution arising in those experiments however differs from the stresses acting in a lamina under transverse loading. In transverse failure of a lamina, radial stresses as well as shear stresses are dominating the failure process of the interface. In addition longitudinal shear stresses are present. Experimental work concerning off-axis loading of single fibers was done e.g. by Tandon and Kim and by Ogihara and Koyanagi. They studied the influence of the fiber alignment by using a specimen in form of a cruciform with skew wings.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Failure criterion based on adhesion for composites under transverse loading.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Christian Marotzke
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Thermosets 2011 - 2nd international conference on thermosets - From monomers to components - (Proceedings)
Jahr der Erstveröffentlichung:2011
Verlag:Fraunhofer Verlag
Verlagsort:Berlin
Erste Seite:86
Letzte Seite:88
Freie Schlagwörter:Adhesion; Composites; Fracture mechanics; Strength
Veranstaltung:Thermosets 2011 - From monomers to components - 2nd international conference on thermosets
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:21.09.2011
Enddatum der Veranstaltung:23.09.2011
ISBN:978-3-8396-0312-3
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.