• Treffer 4 von 54672
Zurück zur Trefferliste

Cryogenic Storage Tanks In Fire Incidents

  • The ongoing geo-political conflicts and the increasing need for the implementation of measures to improve the energetic system sustainability are increasing the importance of tanks for storing cryogenic fluids in the energy industry. The most common example of cryogenic tank applications is the transport of natural gas and hydrogen in their liquid form (LNG and LH2 respectively) for which, considering the same transport volume cryogenic storage ensures significantly higher transport capacities with respect storage based solely on overpressure. A common feature of all cryogenic transported fluids is that their condition must be maintained minimizing heat leaks from the environment as much as possible. This is achieved by the implementation of thermal super Insulations (TSI) systems based on e. g. rock wool, perlites, microspheres, multilayer insulations (MLI), and vacuum which have proven to be effective in applications. However, due to the relatively short period of use in someThe ongoing geo-political conflicts and the increasing need for the implementation of measures to improve the energetic system sustainability are increasing the importance of tanks for storing cryogenic fluids in the energy industry. The most common example of cryogenic tank applications is the transport of natural gas and hydrogen in their liquid form (LNG and LH2 respectively) for which, considering the same transport volume cryogenic storage ensures significantly higher transport capacities with respect storage based solely on overpressure. A common feature of all cryogenic transported fluids is that their condition must be maintained minimizing heat leaks from the environment as much as possible. This is achieved by the implementation of thermal super Insulations (TSI) systems based on e. g. rock wool, perlites, microspheres, multilayer insulations (MLI), and vacuum which have proven to be effective in applications. However, due to the relatively short period of use in some applications, the small number of documented incidents, and the still few investigations carried out in the field, the exploitation of such systems in the cryogenic fluids transport sector still suffers from insufficient knowledge about the course and consequences of incidents. Accidents involving collisions, fires, and their combination are quite common in the transportation sector and may generate extraordinary loads on the tank and its insulation system, eventually leading to tank failure. The present study focuses on the behavior of TSI systems in tanks when it is exposed to an external heat source representative of a hydrocarbon fire scenario. This may cause an increase of the heat flux into a tank by several orders of magnitude with respect to normal design conditions, thus inducing severe and in the TSI, causing the rapid release of flammable gas and even resulting in a Boiling Liquide Expanding Vapour Explosion (BLEVE). To study such scenarios a test rig was developed at BAM that allows testing of TSI at industrial conditions and enables subsequent analysis of TSI samples. This test rig considers the typical double-walled design of tanks for cryogenic fluids with vacuum and an additional insulating material in the interspace. Adjustable electrical heating elements simulate the fire on one side of the double wall. This process allows the implementation of repeatable heat loads of up to 100 kW/m². The other side of the double wall is represented by a fluid-supported heat exchanger, which allows the simulation of cold or cryogenic conditions in the test rig, and to determine the heat flux transmitted through the double wall. Thus, the test rig allows thermal loading and performance analysis of TSI samples at the same time. In the presentation, the results of diverse tested TSI systems will be presented and discussed. As a result of this study, the list of advantages and disadvantages for the choice of tested TSI expands. Within the test, all samples degraded as a consequence of a hydrocarbon fire-orientated thermal load. Strong differences in the behavior of the tested TSI systems over temperature, location, and time were observed. Additionally, the tested MLI insulations were significantly more resistant to their base materials. These results are relevant for the design, the definition of national and international regulations, the Risk assessment, and the development of safety concepts for cryogenic tanks.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 20240408_Cryogenic_Storage_Tanks_In_Fire_Incidents_V2_0.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Robert EberweinORCiD
Koautor*innen:Aliasghar Hajhariri, Davide Camplese, Giordano Emrys Scarponi, Valerio Cozzani, Frank Otremba
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:3 Gefahrgutumschließungen; Energiespeicher
3 Gefahrgutumschließungen; Energiespeicher / 3.2 Gefahrguttanks und Unfallmechanik
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Technik / Spezielle Themen
Freie Schlagwörter:Fire; Insulation; LH2; LNG
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Chemie und Prozesstechnik / Gefährliche Stoffe
Veranstaltung:Cryogenic Storage Tanks
Veranstaltungsort:Munich, Germany
Beginndatum der Veranstaltung:18.04.2024
Enddatum der Veranstaltung:19.04.2024
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.04.2024
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.